NumberFields@home - Batch Status Archived Tables






Decic Fields


Notes on the tables:
Data set names take the form DS-MxN. For the {2,5} case, M is the index for a set of congruences associated to the prime 2, and N is the index for a set of congruences associated to the prime 5. DS-MxN refers to the data set formed by combining the Mth set associated to 2 with the Nth set associated to 5 (using chinese remainder theorem). For the search over Q(i), the max M is 16 and the max N is 121. As M and N increase, discriminant bounds also increase, causing run times to go up, and hence the #WUs goes up accordingly.

Data sets that are currently in progress have their names in bold. Older batches that have been completed, are displayed in light gray. The table below also includes all the future batches required to complete the search (these are the ones with 0% progress). To reduce database accesses, cases that are essentially complete will be flagged as finished

The ETA is estimated as (# WUs Left)/(# WUs completed over last 24 hours). This estimation becomes highly inaccurate near the end of the batch, as the last of the WUs slowly trickle in. When this is the case, we replace the ETA table entry with "NA".


Search 1: Prime Set = {2,5}, Subfield = (i) (1 of 7)

Batch Information WU information
M N Batch NameBatch ProgressETATotal WUs in BatchWUs completedWUs left
14 120 DS14x120 100 % NA 19200 19200 0
14 121 DS14x121 100 % NA 4800 4800 0
15 1-99 DS15x1 thru DS15x99 100 % NA 1883 1883 0
15 100-116 DS15x100 thru DS15x116 100 % NA 2255 2255 0
15 117 DS15x117 100 % NA 4953 4953 0
15 118 DS15x118 100 % NA 2462 2462 0
15 119 DS15x119 100 % NA 14934 14934 0
15 120 DS15x120 100 % NA 34134 34134 0
15 121 DS15x121 100 % NA 81920 81920 0
16 1-99 DS16x1 thru DS16x99 100 % NA 12742 12742 0
16 100-116 DS16x100 thru DS16x116 100 % NA 17988 17988 0
16 117 DS16x117 100 % NA 59429 59429 0
16 118 DS16x118 100 % NA 29091 29091 0
16 119 DS16x119 100 % NA 89600 89600 0
16 120 DS16x120 100 % NA 204800 204800 0
16 121 DS16x121 100 % NA 819200 819200 0



Search 2: Prime Set = {2,5}, Subfield = (√5) (2 of 7)

Batch Information WU information
M N Batch Name Batch Progress ETA Total WUs in Batch WUs completed WUs left
21 10 DS21x10 100 % NA 843 843 0
21 11 DS21x11 100 % NA 14400 14400 0
21 12 DS21x12 100 % NA 57600 57600 0
21 13 DS21x13 100 % NA 141785 141785 0
24 8 DS24x8 100 % NA 6400 6400 0
24 9 DS24x9 100 % NA 32000 32000 0
24 10 DS24x10 100 % NA 9847 9847 0
24 11 DS24x11 100 % NA 128000 128000 0
24 12 DS24x12 100 % NA 284940 284940 0
24 13 DS24x13 100 % NA 819200 819200 0



Search 5: Prime Set = {2,5}, Subfield = (√-5) (5 of 7)

Batch Information WU information
M N Batch NameBatch ProgressETATotal WUs in BatchWUs completedWUs left
9 10 DS9x10 100 % NA 1600 1600 0
9 11 DS9x11 100 % NA 4800 4800 0
9 12 DS9x12 100 % NA 31250 31250 0
10 9 DS10x9 100 % NA 3479 3479 0
10 10 DS10x10 100 % NA 16000 16000 0
10 11 DS10x11 100 % NA 44445 44445 0
10 12 DS10x12 100 % NA 166667 166667 0
11 9 DS11x9 100 % NA 2500 2500 0
11 10 DS11x10 100 % NA 8000 8000 0
11 11 DS11x11 100 % NA 30000 30000 0
11 12 DS11x12 100 % NA 150000 150000 0
12 9 DS12x9 100 % NA 2963 2963 0
12 10 DS12x10 100 % NA 8000 8000 0
12 11 DS12x11 100 % NA 35715 35715 0
12 12 DS12x12 100 % NA 166667 166667 0
13 8 DS13x8 100 % NA 16950 16950 0
13 9 DS13x9 100 % NA 53334 53334 0
13 10 DS13x10 100 % NA 180181 180181 0
13 11 DS13x11 100 % NA 666667 666667 0
13 12 DS13x12 100 % NA 2000000 2000000 0
14 8 DS14x8 100 % NA 20000 20000 0
14 9 DS14x9 100 % NA 60000 60000 0
14 10 DS14x10 100 % NA 209791 209791 0
14 11 DS14x11 100 % NA 705883 705883 0
14 12 DS14x12 100 % NA 1500000 1500000 0
15 8 DS15x8 100 % NA 23810 23810 0
15 9 DS15x9 100 % NA 80000 80000 0
15 10 DS15x10 100 % NA 250000 250000 0
15 11 DS15x11 100 % NA 800000 800000 0
15 12 DS15x12 100 % NA 2000000 2000000 0
16 8 DS16x8 100 % NA 90910 90910 0
16 9 DS16x9 100 % NA 320000 320000 0
16 10 DS16x10 100 % NA 800000 800000 0
16 11 DS16x11 100 % NA 2000000 2000000 0
16 12 DS16x12 100 % NA 1600000 1600000 0





Main page · Your account · Message boards


Copyright © 2019 Arizona State University