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ABSTRACT

Constructing number fields with prescribed ramification is an important problem in
computational number theory. In this dissertation, I consider the problem of generating
number fields of a fixed degree which are unramified outside a given set of primes. Current
methods for generating such fields use a method called the targeted Hunter search, but this
method is only guaranteed to find the primitive fields. Another search technique, called
the Martinet search, is used to find imprimitive fields. The standard Martinet search is
designed to find all fields with a given discriminant bound and is not efficient at targeting
fields with prescribed ramification. In this dissertation, the targeted search technique and
the Martinet search technique are combined to form a new algorithm, called the targeted
Martinet search. The targeted Martinet search is guaranteed to find all the imprimitive
fields having a prescribed ramification. This new algorithm is then used to generate complete
tables of imprimitive number fields for degrees 4 through 10.



vi



For my wife, Valerie.

vii



viii



ACKNOWLEDGMENTS

I would like to thank my advisor, John Jones, for introducing me to this line of
research, and also for his guidance along the way, especially showing me the idea behind
the first proof to Theorem 3.5. I would also like to thank my employer, Lockheed Martin,
for the financial assistance and for allowing me a flexible work schedule. Finally, I owe a
debt of gratitude to my wife, Valerie, for all her patience and understanding throughout

this fun but arduous process.

X






TABLE OF CONTENTS

LIST OF TABLES . . . . . . . e

LIST OF FIGURES . . . . . . . . e

CHAPTER 1 INTRODUCTION . . . . . . .

1.1. Hunter Searches . . . . . .. . .. . ... . . .. ... .
1.2. Martinet Searches . . . . . . . . . . . ...
1.3. Targeted Hunter Searches . . . . . . . .. .. ... . ... ... .......
1.4. Targeted Martinet Searches . . . . . . . . . . ... ... ... ...

CHAPTER 2 ARCHIMEDEAN BOUNDS FOR THE COEFFICIENTS . . . . ..

2.1. Boundson aj . . . . . .. e e
2.2, Bounds on a, . . . . ... e e e e e e
23. Boundsona; (2<i<n—1) . . .. .. e
2.4. Constraints on Coefficients . . . . . . . . . . . .. ... ... ...
2.4.1. Constraints on @, . . . . . . . . . . e e
24.2. Constraintsonagy 2<k<n—1) ... .. ... ... .. ...,
2.4.3. ConstraintS on @p_1 . . . . o v o o e e e e
2.4.4. Additional Constraints . . . . . . . . . ... ... ... ..

CHAPTER 3 COMPUTING CONGRUENCE VECTORS . . . . ... ... ....

3.1. The Global to Local Principle . . . . . . . ... ... ... ... ... ...
3.2. Local Congruences . . . . . . . . . . it
3.2.1. The Totally Ramified Case . . . .. ... .. ... ... .......
322, The f>1Case. . .. .. .. it
3.3. Wild Ramification . . . . .. .. .. .
3.3.1. Quadratic Extensions . . . . . . ... ... ... ... ... ...
3.3.2. Cubic Extensions . . . . . . . ...
3.3.3. Quartic Extensions with f=1 . . . ... ... ... ... .....
3.3.4. Quartic Extensions withe=f=2 . . .. ... ... ... ... ...
3.3.5. Quintic Extensions . . . . . . .. ... o

CHAPTER 4 PROOF OF THEOREM 3.5 . . .. ... ... .. ... ... ....

4.1. The First Proof . . . . . . . . . . . ..
4.2. The Second Proof . . . . . . . . . . . . ...
4.2.1. General Purpose Results . . . . . . ... ... ... ... .......

4.2.2. Properties of the Newton-Ore Exponents . . . . . .. .. ... ...
4.2.3. Proof of Theorem 3.5 . . . . .. .. .. .. ... ...

X1

Page
xiii

XV

U = W = =



CHAPTER 5 THE ALGORITHM . . . . . . . ... ... ... 51
5.1. Representatives for the Residue Field . . . . . . . .. .. ... ... .. ... 51
5.2. Discriminant Calculations . . . . . . .. ... ... Lo 52
5.3. Implementing the Bounds . . . . . . ... ... ... ... ... ... 53
5.4. Implementing the Congruences . . . . . . ... ... ... ... .. ..... 56
5.5. Algorithm Summary . . . . . . ... .. L L 58

5.5.1. The Targeted Martinet Search . . . . . . . ... ... ... ..... 59
5.5.2. Algorithm for Constructing Field Tables . . . . . . . ... ... ... 60

CHAPTER 6 APPLICATIONS . . . . . . . e e e 63
6.1. The Calegari Conjecture . . . . . . . . . . . . ... 63
6.2. Verification of Old Tables . . . . . . .. ... ... ... .. ... ...... 65
6.3. Construction of New Tables . . . . . . . .. ... ... ... .. ....... 65

REFERENCES . . . . . . e 67

APPENDIX A TABLES OF FIELDS . . . . . . . . . .. .. ... ... . ...... 69
A.1. Imprimitive Sextic Tables . . . . . . . . .. ... ... ... ... ... ... 69
A.2. Imprimitive Octic Tables. . . . . . . . . .. .. .. ... ... .. ...... 77
A.3. ITmprimitive Nonic Tables . . . . . . . . .. ... ... ... ... ...... 95
A.4. Tmprimitive Decic Tables . . . . . . . . .. ... ... ... ... ... .. 104

xii



Table
2.1
3.1
3.2
3.3
3.4
3.5
3.6
Al
A2
A3
A4
A5
A6
A7
A8
A9
A.10
A1l
A12
A.13
A.l14
A.15
A.16
A7
A.18
A.19
A.20
A21
A.22
A.23
A.24
A.25

LIST OF TABLES

The possible values for a; for various nand m. . .. ... ... ... ....
The form of f, for quadratic extensions. . . . . . . . . ... ... ... ...
The form of f; for cubic extensions. . . . ... ... ... ... .......
The form of f; for quartic extensions wheneg=1. . .. ... ... .. ...
The form of f, for quartic extensions when eg =2. . . . . .. .. ... ...
The form of f, for quintic extensions when ey =1. . . . . .. .. ... ...
The form of f, for quintic extensions when ey =2. . . .. .. ... ... ..
Imprimitive sextics with |[S|=1. . .. . ... ... ... . ...,
Imprimitive sextics with |[S|=2. . . . .. .. ... ... ... 0 L.
Imprimitive sextics with |[S|=3. . . . .. .. ... .. ... ..
Octics with a quartic subfield and |S|=1. . . .. ... ... ... ... ...
Old octics with a quartic subfield and |[S|=2. . . ... ... ... ... ...
New octics with a quartic subfield and |[S|=2. . ... ... ... ......
Imprimitive octics with no quartic subfield and [S|=1. .. ... ... ...
Imprimitive octics with no quartic subfield and [S|=2. .. ... ... ...
All imprimitive octics ramified at only p=2. . . . . . ... ... ... ...
Imprimitive octics ramified at one prime p >2. . . . .. ... ... ... ..
Octics having class number A > 100. . . . . . . . .. .. ... ... ...
Imprimitive nonics with [S|=1.. . . . .. .. ... ... ... ... ...
Old imprimitive nonics with [S|=2. . . ... ... ... ... ... ... ..
New imprimitive nonics with |S|=2. . . . . ... ... ... ... ... ...
Imprimitive nonics ramified at one prime. . . . . . .. .. ...
Nonics having class number h > 8. . . . . . . . ... .. ... ... .....
Decics with a quintic subfield and |S|=1. . . .. .. ... ... ... ....
Old decics with a quintic subfield and [S|=2. . . . ... ... ... ... ..
New decics with a quintic subfield and [S|=2. . . ... ... ... .. ...
Decics with a quadratic subfield and [S|=1. .. ... ... .. ... . ...
Decics with a quadratic subfield and [S|=2. ... .. ... ... ......
Select decics unramified outside S ={2,3}. . ... ... . ... ... ...
Imprimitive decics ramified at one prime. . . . ... ... ... .......
Decics with a quintic subfield and having class number h > 32. . . . . . ..
Decics with a quadratic subfield and [S|=2. ... .. ... ... ......

xiii

104



Xiv



LIST OF FIGURES

Figure Page
3.1 Local field diagram. . . . . . .. .. . L 23
3.2 Local field diagram showing the intermediate field £. . . . . ... ... ... 25
4.1 Field diagram for proof 1. . . . . . . . . .. .o 40

p.q%






CHAPTER 1

INTRODUCTION

An important problem in the study of fields is to find all number fields of a fixed
degree with a given discriminant bound. A related problem, which is equally important,
is to find all number fields with a prescribed ramification structure. This dissertation will
focus on this second problem, and will concentrate primarily on finding all imprimitive
number fields unramified outside of a finite set of primes.

One of the key theorems, which is used extensively in this line of research, is Hunter’s
theorem. Hunter’s theorem is used to give bounds on the integer coefficients of a defining
polynomial for the field. One then finds all fields by doing a computer search over all
polynomials satisfying the bounds. The problem with Hunter’s theorem is that it is only
guaranteed to find the primitive fields (i.e. those with no intermediate subfields). This
issue is resolved by using a relative version of Hunter’s theorem, called Martinet’s theorem.

For fields of degree four or higher, the standard computer searches can become
computationally burdensome. We fix this by using what is called a targeted Hunter search.
When the field is unramified outside a given finite set of primes, the coefficients of a defining
polynomial obey certain congruence relations. By exploiting these congruences, we can
reduce the number of polynomials that need checking by several orders of magnitude.

Martinet searches have been performed by Diaz Y Diaz and Olivier [4]. The targeted
Hunter search has been used before for sextic and septic fields by Jones and Roberts [7, 8].
The goal of my research was to combine these two methods into what we call a targeted
Martinet search, and then apply the new method to several applications.

In this chapter, I give a brief overview of the three main search techniques: the
Hunter search, the Martinet search, and the targeted Hunter search. I end the chapter with
a short discussion of the targeted Martinet search.

1.1. Hunter Searches
Suppose one wished to determine all algebraic number fields K of degree n with
discriminant bounded by M. The primary tool used to accomplish this is Hunter’s theorem:

Theorem 1.1 (Hunter). Let K be a number field of degree n over Q. There exists o € O \7Z
such that

n 1 d 1/(n—1)
S Jsl < 2 (@) + 7 (’K') |
im1 n n



where the a;’s are the conjugates of «, dx is the discriminant of K, v,—1 is Hermite’s
constant in dimension n — 1, and Tr(a) = > " | o is the trace of o over Q. Furthermore,
we may assume that 0 < Tr(a) < 3.

Let us assume that the element « given by Hunter’s theorem is primitive (which is
always the case when n is prime). Let f, be the minimal polynomial for a over Q and write

falz) =2" + a1z + -+ an12 + ap.

Since a € O we must have a; € Z for each i. Hunter’s theorem also tells us that |a1]| =

| Tr(e)] < 4. We can obtain bounds on the other coefficients as follows. Since df is

bounded, so is Th(«) & S |ei|?. Say Ta(a) < B. Then for each i, |a;| < v/B. Finally,

since the a;’s are symmetric polynomials in the «;’s, one can easily obtain the following
bound:

lag| < <Z>Bk/2 (k=2,3,....n).

So every primitive field K of degree n with bounded discriminant is defined by a
polynomial f, with coefficients bounded as above. The number of such polynomials is finite,
hence the number of fields K is finite and these fields can be obtained by checking each
candidate f,. We reiterate that this method is only guaranteed to find all the primitive
fields; a method for obtaining the imprimitive fields uses Martinet’s theorem, which is
discussed later.

The bounds on the a;’s computed above are actually quite weak, and there are
several ways to improve these bounds. See Cohen [3](pp.445-460) for a good summary of
the various methods for tightening these bounds.

The general algorithm for finding the primitive fields K of degree n with dg < M
proceeds as follows. One starts with a set of nested loops over the a;’s. For each combination
of a;’s, one forms the polynomial f,. For f, to be valid it must satisfy the following
conditions:

1. fo must be irreducible,
2. T5(«v) must satisfy Hunter’s bound, and
3. |dk| must be less than or equal to M.

If all these conditions are met, then f, is added to a list. Since some of these polynomials
may generate the same field, a final step in the algorithm is to remove any duplicates
from the list. An efficient method for removing duplicates is the polredabs algorithm as
described in [2] (pp.170-173, algorithm 4.4.12). Polredabs transforms each polynomial into
a new polynomial which defines the same field but has a simplified pseudo-canonical form.
Two polynomials which define the same field will most likely be reduced to the same form
by polredabs, allowing the easy removal of almost all the duplicates. To weed out the last
remaining duplicates, we use the nfisisom subroutine from the pari-gp library [2] (pp.179-
180).



Now suppose one wanted to determine all fields K of degree n which were unramified
outside a finite set of primes S. Such a field K would have discriminant of the form

dg = £ H Pyt
pi€S

A famous result from algebraic number theory tells us that the exponents r; are finite. In
fact, one can show the following result which gives a maximum bound for the discriminant:

Theorem 1.2. Let K be a number field of degree n over Q. Let p be a prime at which K is
ramified. Writen asn = a;p"+---+aip+ag where0 < a; <p—1andletT ={i|a; # 0}.
Then the upper bound for the exponent of p in di is

B=n—|T|+ Ziaipi.
i€T

Now that we have an upper bound on |dx|, we may apply our earlier results to
find all the primitive fields K of degree n which are unramified outside of S. Although
easy to implement, this approach is also very inefficient. We will see in section 1.3 how
the ramification structure of p can be used to obtain congruences on the coefficients of f,,
thereby improving computation time by orders of magnitude.

1.2. Martinet Searches

In the previous section, we showed how Hunter’s theorem could be used to find
number fields K with bounded discriminant. Hunter’s theorem is only guaranteed to find
all the primitive fields. In order to find the imprimitive fields, one could use Martinet’s
theorem [12], which is basically a relative version of Hunter’s theorem:

Theorem 1.3 (Martinet). Let K be a number field of degree m over Q and let L be a finite
extension of K of relative degree n = [L : K|. Let o1,...,0, denote the embeddings of K
into C. Then there ezists a« € O\Og such that

mn ) 1 ) |dL| 1/m(n—1)
> ail? < - > 1o (Trry (@) + Yimgn-1) :

i=1 j=1 " ldic|

where the ;s are the conjugates of o, dg is the discriminant of K, dy, is the discriminant
of L, and ~yp(n—1) is Hermite’s constant in dimension m(n — 1). Furthermore, « can be
chosen arbitrarily modulo addition by elements of O and also modulo multiplication by
roots of unity in Ok .

Suppose we wanted to find all fields L of degree nm containing a subfield K of degree
m, and such that |dy| < B. From algebraic number theory we have

dr, = id[;?:K]NK/Q(DL/K%



which implies |dg| < |dL\1/" < BY™. So the first step in a Martinet search is to find all
fields K of degree m with |dx| < BY/™.
Fixing the subfield K, let o be the element coming from Martinet’s theorem, and
let
fox(@) =2" +arz" '+ -+ ap 1z +an

be the minimal polynomial for a over K. The bound on T3(a) = Y./ || can be used
to give bounds on the coefficients a;. We omit the details of this, but it is analogous to the
procedure for Hunter searches.

The general Martinet search algorithm for finding all field extensions L/K with
[L:K]=mn, [K:Q] =m,and |df| < B proceeds as follows. One first finds all fields K of
degree m with |dg| < B'/™. For each field K, one obtains the coefficient bounds and then
constructs a sequence of nested loops over these coefficients. For each combination of a;’s,
one forms the polynomial f, k. For f, i to be valid it must satisfy the following conditions:

1. fa,x must be irreducible over K. When it is, we set L = K(a).
2. T5(«v) must satisfy Martinet’s bound, and
3. |dr| must be less than or equal to B.

If all these conditions are met, then f, x is converted to a degree nm polynomial over Q
and added to a list. The final list is refined in the exact same way that it was for the Hunter
search.

As a final note, the above procedure can also be used to determine all imprimitive
fields L unramified outside of a finite set of primes by first computing the bound on dj, as
described in section 1.1. But as mentioned before, this approach would be highly ineffi-
cient. An efficient alternative is the targeted Martinet search, which is the subject of this
dissertation.

1.3. Targeted Hunter Searches

Suppose we wanted to find all primitive number fields of degree n which are unram-
ified outside of a finite set of primes S. As mentioned in section 1.1, the number of such
fields is finite and can be found using a standard Hunter search. However, such an approach
would be computationally impractical. A more practical method would be to use what is
called a targeted Hunter search [7, 8].

In a targeted Hunter search, the archimedean bounds on the polynomial coefficients
are the same as for a standard Hunter search. But in addition, the targeted search uses
congruences on the coefficients in order to reduce the number of candidate polynomials and
thereby speed up the algorithm.

A set of congruences is obtained for each possible ramification structure. Given the
ramification structure, the congruences are found via a localization process at each p above
p € S. For example, when n = 3 there are only 2 possible ways that p can ramify:



1. pOg =p3, or

2. pOr = p2ps.

One can show that the first ramification structure leads to a set of 2 congruences given by

falz) = x° (mod p)

and

3
falz) = 2+ 2%+ %a? + (;) (mod p),

provided that p # 3. When p # 2, the second ramification structure leads to a set of 2p
congruences given by
fo(z) = 2° — 3%z — 2a®  (mod p)

and
folz) = 23 + 2% + a(2 — 3a)x + a*(1 — 2a)  (mod p)

where a € {0,1,...,p — 1}. When p = 2 or 3, the ramification is wild and some additional
work is required. Wild ramification gives a larger discriminant bound, but the congruences
also have a larger modulus. For more detailed examples, the reader is directed to [7, 8].

1.4. Targeted Martinet Searches

The goal of my research was to combine the Martinet search technique with the
targeted search technique, and apply it to the problem of finding all imprimitive fields
unramified outside of a finite set of primes.

The algorithm can be viewed as having three main components. First, obtain bounds
on the polynomial coefficients; second, obtain congruences on the coefficients; and third,
implement the congruences. A separate chapter is devoted to each of these issues. Following
that, there is a chapter giving applications of the targeted Martinet search. Finally, there
is an appendix with complete tables of number fields obtained via the targeted Martinet
search.






CHAPTER 2

ARCHIMEDEAN BOUNDS FOR THE COEFFICIENTS

The first component of a targeted Martinet search is to obtain decent archimedean
bounds on the polynomial coefficients. Note that the bounds derived in this chapter also
apply to a standard Martinet search.

Let K be a degree m field, and let L be a finite extension of K with [L : K] = n.
Let o1,...,0, denote the embeddings of K into C, and for each ¢ let o1, ..., 04, denote
the embeddings of L into C extending ;. Without loss of generality, we will assume that
o1 is the identity on K and that o;; is the identity on L. Finally, we let wy,ws,...,w;, be
an integral basis for K.

Now let o« € O \Og be the element given by Martinet’s theorem and let fq x(x) €
Ok [z] be the minimal polynomial for o over K. Write

1

foa,K(x) =2"4+ax" + a1+ ap

where each a; € Og. We may also write a; = Z;nzl a;;w; where each a;; € Z.
The goal of this chapter is to give bounds for the coefficients a;.

2.1. Bounds on a;

According to Martinet, we may add an arbitrary element of Ox to a without chang-
ing the bound. The minimal polynomial for a + ZT=1 bjw; is given by

n—1

m m " m
fa x—ijwj = x—ijwj + a1 x—ijwj +--+an
j=1 j=1 j=1

m
= 2"+ |la—n E bjwj | 2"t
j=1
The 21 coefficient is

m

m m
E aljwj —nNn E bjwj = E (alj — nbj)wj.
J=1 J=1

Jj=1



By choosing appropriate values for b;, we may assume that —| 252 | < |ay;| < [2] for each
j. It follows that there are n™ possible values for a;. For example, when n = m = 2, the
possible values for a; are {0,1,w,1 + w}.

But we can do better. According to Martinet, we may multiply by a root of unity
in O without affecting the bound. So by choosing b; appropriately we first assume that
la11| < |5]; and then multiplying a by —1 when a;; < 0 we may assume that aj; €
{0,1,...,[%]}. Here we have used the fact that f_o(z) = £ fo(—2) = 2" —a12" '+ -La,.
Choosing the other b;’s appropriately we may still assume that —| 251 ] < |ay;| < [%] for
each j > 1. We now have ([%] + 1) n™! possible values for a;.

But we can do still better. When a;; = 0, we may apply the same logic as above to

the coefficient a1z to give aip € {0,1,...,[§]}. Similarly, when both a1; = 0 and a2 = 0,
we may apply the same logic to give a13 € {0,1,...,[§]}. And in general, when a;; through
ayy, are all zero, we can assume ay ;41 € {0,1,...,[5]}.

Letting n(n, m) denote the number of possible values for a;, we have
n(n,m) =n(n,m—1) + LgJ ML

Starting with n(n,1) = 1+ [ 5], an inductive argument gives us

s = 1[5 5] e 5] ot 3] o
= 1+ gJ (I+n+n*4-+nm

. Ln J nm—1
B 2 n—1)"
Table 2.1 gives the possible values for aq for various values of n and m. When m = 2
the table assumes the integral basis is {1,w}, otherwise the integral basis is {wi,...,wm}.

This table gives all possible cases for fields L with [L : Q] < 10.
We summarize the above results in the following theorem:

Theorem 2.1. The coefficient a1 can be chosen from a finite set of values. This set depends
nm—1
n—1

solely on n and m and contains 1 + L%J : ( elements. Table 2.1 lists the possiblities

for all degrees up to and including decics.

Note that when m = 1 the above results give |5 | + 1 possible values for a; given by
{0,1,..., 5]} which is consistent with Hunter’s theorem.
Fixing the value for a1, Martinet’s bound now becomes:

mn 1 ’dL| 1/m(n—1)
ai2<— oi(ar)]? + m(n— < > .
;l | _n;!g( D™+ Ym(n-1) T

The second term in Martinet’s bound depends on the field K and the field L. Fixing the
subfield K and also fixing the ramification structure for L/K, gives us values for dx and dy.

Once these values have been fixed, we then have an actual numerical value for Martinet’s
bound which can be used to bound the other coefficients of f,.



TABLE 2.1: The possible values for a; for various n and m.

n | m | n(n,m) Possible values for aq
2| 2 4 {0, 1, w, 1 +w}
213 8 {0, w1, w2, w3, w1 +ws, wi+tws, watws, wi+wstws}
21 4 16 Z?zl a1;w; ‘ 0<a; £1
215 32 2?21 a1;W; ‘ 0<a; <1
312 5 {0, 0+w, 1, 14w, 1 —w}
3|3 14 {0, w3, wa, w2 — w3, W + w3, Wi, W1 — w3, Wi + w3,
w1 + w2, w1 + w2 —ws, w1 +w2 +ws, w1 —wa,
W] — W2 — w3, wl—UJ2+W3}
4| 2 11 {0, 04w, 0+2w, 1, 1 4w, 14+2w, 1 —w,
2, 24w, 242w, 2—w}
502 13 {0, 0+w, 042w, 1, 1 +w, 1+ 2w, 1 — 2w,
1-1w, 2, 24w, 242w, 2—2w, 2— 1w}

2.2. Bounds on a,

We now turn our attention to the constant coefficient a,,. Let C,, denote Martinet’s
bound where the subscript a; is used to signify the dependence of Martinet’s bound on the
coefficient a;.

We start by considering the minimal polynomial of « over K:

n

+-rFap—1x+an = H(l’ — Ulj(a)).
j=1

forx(x)=2a"+ ajx" !

Therefore,
n

n n
1
lanl® = T ] low(a)? < - > lo(@))
=1 =1

where we have used the arithmetic/geometric mean inequality. Applying the same idea to
the minimal polynomial of ;1 (a) over o;(K) we obtain

foa@oii) = 0i(fa,x) = @™ +0oi(a)z "+ + oi(an—1)z + oi(an)
= H(l‘ oij(a))
j=1
and
n 1 n "
loi(an))? = [T loij(@)> < | = o ())?



10

Combining all these inequalities, we get

m 1 n " 1 n "
Sl < — Y lo@P| +— |3 lon@)?
i=1 j=1 j=1
n n
ot D lomg(a)f?
j=1
n
1 m n )
< |22 leu@
i=1 j=1
1 n

Now write a,, = Z;”:l anjw;j where each a,; € Z. Then o;(a,) = Z;nzl an;oi(wj)
and we get the following matrix representation

o1(an) o1(w1) o1(w2) o1(wWm) an1
oa(an) _ oo(w1) oa(wo) o2 (wm) an2
om(an) Om(w1) om(we) -+ om(wm) Anm

Multiplying each side of this expression by its conjugate transpose, we get
m
> loilan)? = 6" Q" Qar,
i=1

where @ = [0;(w;)]i; and H denotes the Hermitian operator (i.e. conjugate transpose). We
have proven the following theorem:

Theorem 2.2. The coefficient a,, satisfies the bound
1 n
dn" Q" Qay, < <nCa1) )

where Q = [o;(wj)]ij-

Note that the expression d;, Q"Qaq;, is a positive definite quadratic form in the
integer components of a,.
Theorem 2.2 can be improved for the case when m is even and the signature of K is

0,2). Let s = 2 and order the embeddings of K so that o; and ;1 are conjugate pairs
2 2
(i=1,2,...,s). It follows that

DD los@PP= >0 D o))

i=1 j=1 i=s5+1 j=1
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and therefore

Cay. (2.2)

N

SNl = 5 33 lola) <

i=1 j=1 i=1 j=1

The bound in Equation 2.1 can then be made tighter as follows

n n
m n n
1
D loilan) < D loy(@)F| ot 1D o)
i=1 j=1 j=1
1| ' 1| '
+ﬁ |0511,5(a)] + +ﬁ Z’Umj(a)P
j=1 J=1
1 S n " 1 m n "
< - i (@)F| 1 D2 D lois(e)?
i=1 j=1 i=s+1 j=1
2 (1 "
< laom)

We state this as a corollary.

Corollary 2.3. Let [K : Q] be even and suppose K is totally complex. Then the coefficient
an satisfies the bound

~ T AHA - 1 1 "
(07 Q Q(In S W ECal .
2.3. Boundson a; 2<i<n-1)

Before bounding the other coefficients, we will need some notation. First, let
{a1,..., o} denote the roots of f, i (z). We then define the power sums to be

n
W=D 0
=1

where k € Z. The power sums are inductively related to the coefficients of f, x(x) via
Newton’s formula

k
kak = — Z Ag—5Sj5 (2.3)
j=1

def
where ag = 1. The first few values of sj, are
§1 = —amp,

So = a% — 2a9,

and

S3 = —ai” + 3a1a9 — 3as.
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Now define Tj, = 377, la;|¥ and note that |sg| < Tj.

The usual strategy in the literature is to first bound s, and then inductively use
Newton’s formula to get bounds for ax. We start by considering so, which may be written
as

n
S9 = Z Jlj(a)2.
J=1

If we apply o; to sy we get

Then |o;(s2)| < >0, |0 ()|? and we get

m ['m 2

D loi(s2)? < D loi(sa)]

i=1 Li=1

2

> o))

| i=1 j=1
< Ci. (2.4)

IN

If we let b = a?, then from Newton’s formula we have 2a3 = b— $5. The jth component of
ay then satisfies ag; = %(bj — 595). Since ag; must be an integer, we only keep those values
for so; having the same parity as b;. We have proven the following theorem.

Theorem 2.4. The power sum ss satisfies the bound
$1Q1Qs < CF.

Letting b= a3, the coefficient ay satisfies the relation

Theorem 2.4 can be improved for the case when m is even and the signature of K is
(0, %) Let s = 5 and order the embeddings of K so that o; and ;1 are conjugate pairs
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(1=1,2,...,s). This time we get
m n

Y loi(s2)l? < D0 D lous(a)l?
i=1

i=1 j=1

j=1

IN

= 225: j£:|0w
2

S n
> loij(@))
7j=1

IA
[N
| —
S
9
[y
| IS
[\

where we have used Equation 2.2. This gives us the following corollary.

Corollary 2.5. Let [K : Q] be even and suppose K is totally complex. Then the power sum
so satisfies the bound

1

T -
$'Q"Qs < 5031-
Letting b= a?, the coefficient ay satisfies the relation

= (b $2).

l\.’)\r—t

The other power sums s; can be bounded in the same way that so was bounded.
The precise result is stated in the following theorem.

Theorem 2.6. The power sum sy, satisfies the bound

~TAHA k
Sk Q7 Qsp < Cy,.

Given a; and s; for i € {1,2,.. — 1}, set b= —Z 1 ap—;sj. Then the coefficient ay
satisfies the relation
1 -
- _ Ly oy
ajp = 1 (b — k)

There is a much better alternative to Theorem 2.6. The method is due to M.
Pohst [14], and uses Lagrange multipliers to minimize the bounds on Tj. The method is
summarized in the following theorem.

Theorem 2.7 (Pohst). Let f = z" + a1z ' + - + a, where a, is fived, let ty be any

bound for To = Y |ai|? (the a;’s are the roots of f), and let r = Iantlé/"'
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1. Forng € {1,2,...,n — 1}, the equation
noz™ " 4+ (n —ng)x"® =r
has either one or two positive roots. Let zy,, be the smallest such root.

2. For any k € Z, let

]k/" max {nozk(”o n/2 4 (n—no)zﬁgop}.

ty = |an
1<no<n—1

Then we have the bound |si| < Ty < tj.

A proof of Theorem 2.7 can be found in [3] (p.458). The next theorem is helpful for
computing the z,,’s.

Theorem 2.8. Let Ry, () = kx* " +(n—k)a* where 1 <k <n—1. Forr > n, let z, be the

unique root of Ry(x) —r =0 with 0 < z; < 1. Set zy = (%)1/(”*]“) and Ty = x; — Rggm(;),;r.
k 1

Then x; is an increasing sequence, x; < zx for all i, and x; converges quadratically to zy.

We will use the method of Pohst to bound |sg| for 3 < k < n — 1. We must
apply Pohst, not only to fq i, but also to every conjugate polynomial f5, ()0;(k)- Let

T2(Z) =i loij(a a)|2. In order to use the method of Pohst, we need a bound tg) for T( g
Starting from the Martinet bound » ;% >7%_, |o;(a )2 < C4y, we get

n m n
=D lowj (@) < Cay =Y > loyi(@)* (2.5)
j:1 i=1 j 1
i#k
Next, from the arithmetic/geometric mean inequality we have

1/n

Z o) > n H ou(@P| = nloia)P/".
Substituting this into Equation 2.5, we finally get

m
k
T3 < Coy =Y los(an) P/,
iz
Now let tl(f) be the Pohst bound for 7; IEZ:), obtained by applying Pohst to the ith conjugate
polynomial. We then have |o;(sg)| < t,(;). Combining these bounds together we get

m

5" Q"Qsi = Y loi(s1) Emj[ I

=1

The above results are summarized in the following theorem.
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m
Theorem 2.9. For k € {1,2,...,m}, let tgk) = Cy — nZ]ai(an)\z/”. For each i €
iZk
{1,2,...,m}, let {tg) ‘ 3<k<n-— 1} be the Pohst bounds, obtained by applying Theorem
m
12
2.710 fo,1(a)0i(K)- Set Bs, = Z [t](;)} . Then the power sum si satisfies the bound
=1
$i,' QUQSs), < B,
Given a; and s; for i € {1,2,... k — 1}, set b=— Z;:ll ax—;8;. Then the coefficient ay,

satisfies the relation
1 -
ar = —(b— sg).
= (b= sk)

2.4. Constraints on Coeflicients

The bounds derived in the earlier sections are quite good. However, it is possible to
augment these bounds with additional constraints on the coefficients; and any polynomial
not satisfying these constraints may be discarded. We start with some lemmas. A proof for
Lemma 2.10 can be found in [3] (p.452); the proofs for the other lemmas are omitted but
are not difficult.

Lemma 2.10. Fori=1,2,....,n let x; > 0, and let k > 2 be a real number. Then

n n k/2
i=1 i=1

Lemma 2.11. Letn >3 and let xz; > 0 fori=1,2,...,n. Then

n—1 n n—1 n
DD PRI P
i=1

i=1 j=i+1

with equality iff x; = x; for all i and j.

Lemma 2.12. Letn >4 and let xz; > 0 fori=1,2,...,n. Then

n—2 n—1 n

Z Z Z zixx) < é(n—l)(n—2)z$?
i=1

i=1 j=i+1 k=j+1
with equality iff x; = x; for all i and j.
The next lemma generalizes the previous two lemmas.

Lemma 2.13. Fiz k> 2. Letn>k+1 and let x; > 0 fori=1,2,...,n. Then

n

1
Z{ all distinct k-tuples x4, @iy - - - x4, } < . (Z) Z zk

=1

with equality iff x; = x; for all i and j.
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2.4.1. Constraints on a,. First consider the minimal polynomial for —a. When
n is odd,

n—2 _

f,a(l‘) = _fa(_'r) =" - CLlwn_1 + agx F Ap—1T — Ay

Since L = K(a) = K(—«a), when a; = 0 we may assume a,; > 0. We can do this because
the bounds on a1, which come from Theorem 2.2, are symmetrical about 0.

This constraint cannot be used when n is even, because in that case f_,(z) and
fa(z) have the same constant coefficient. However, a similar idea can be applied to the ag
coefficient; this will be described in the next section.

Theorem 2.14. If n is odd and a1 = 0, then one may assume a,1; > 0.

We now derive a second constraint on the a, coefficient. Starting with the arith-
metic/geometric mean inequality,

oitan)l = [T o) < |~ S low(@l|
j=1 j=1

from which it follows that

1 [« ’
|oi(an) P < 3 Z|O’ij(0é)
< o D% 25 S o) (el
J1=1je2=j1+1
1 |« "
< = Zr%<a>\2+<n—1>2m<a>2
Jj=1 j=1

1 n
= = loij(@))
n “
j=1
where we have used Lemma 2.11. Summing over ¢ gives

Zm o) <13 S o) <

zljl

CLl‘

3\H

We have proven the following theorem.

Theorem 2.15. The coefficient a,, satisfies the inequality

m

1
> loi(an) /" < —Cay.

i=1
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Theorem 2.15 can be used to give

Sloian? = Y (loian) )"
i=1 i—1
< ( loi(a 2/"> (By Lemma 2.10)
=1
< l )
~ TL a1

which is the same bound derived in Theorem 2.2. So the bound of Theorem 2.15 is tighter
than that of Theorem 2.2.

2.4.2. Constraints on ay (2 <k <n—1). We start with the analog of Theorem 2.14
for the case when n is even. When n is even,

foa(@) = fa(—2) = 2" — @12 +aga" % — -+ — an 1T + ap.

Let n > 4 and consider the as coefficient. When a; = 0, we have s3 = —3a3. Therefore,
from Theorem 2.9,

a3t QM Qaz = 83 THQs; < 9333

So we can bypass the computation for ss, and go straight to az. Since the bounds on ag; are
symmetrical about 0, we can use the same idea as in Theorem 2.14 to assume that ag; > 0.

Theorem 2.16. If n is even, n > 4, and a1 = 0, then as satisfies the inequality
- L 1
a3 Q" Qa3 < gDsa-

Furthermore, one may assume that ag; > 0.

n—1 n
Next, consider the ay coefficient. Since ag = Z Z o1i(a)oj(a), Lemma 2.11
i=1 j=i+1

gives

n—1 n
lazl <Y > ovi(a)] - owj(a

i=1 j=i+1

We have a similar inequality for each o;(as2):

2
7j=1
Hence,
ZZ;|0'i(a2)| < ;;]aij(aﬂ < 5(n—1)Cay.

This proves the following theorem:
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Theorem 2.17. The coefficient ao satisfies the inequality

m

> loila)] <

i=1

(n—1)C,,.

N |

The inequality for as generalizes to the other coefficients. The coefficient ay is the
kth symmetric polynomial in the roots of f, x. Hence,

ay = Z{ all distinct k-tuples o1;, ()14, (@) - - - 014, () }

So from Lemma 2.13 we get

1/n) <
al <2 (1) Sl
j=1

We have a similar inequality for each o;(ay):
ol < 2 (1) S lotorr < L (1)
o < — Oij < —
F n \k = ! n\k/)*

where {t,(f) | 1 < i < m} are the Pohst bounds, obtained by applying Theorem 2.7 to
Joi1(a),0:(K)- We have shown the following:

Theorem 2.18. For k € {3,4,...,n — 1}, the coefficient ay, simultaneously satisfies the
following m inequalities:

1/n\ @ .
<2 ()80 a<ism)

where {t,(f) | 1 <i<m} are the Pohst bounds.

In particular, Theorem 2.18 gives

loi(az)] < =(n —1)(n—2)t",

=

jo1(as)| < 57 (n— 1)~ 20— )t

At first sight, these bounds might appear to be too loose to be helpful, but experience shows
this is not the case, especially for small n. For example, when n = 5, the second inequality

becomes |o;(aq)| < tg), which is actually quite good.

2.4.3. Constraints on a,_1. In addition to the constraint on a,_1 given in the
previous section, there is another useful constraint which can be applied when n > 5, which
is now described.

A careful reading of Theorem 2.7 tells us that the method of Pohst also applies

to T4 def > |o;| 1. Letting t(_l)l be the Pohst bound corresponding to the i¢th conjugate
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polynomial, we have |o;(s_1)| < t(_l)l If we let aq,as,...,0p, denote the roots of f, g, then
the a,, and a,_1 coeflicients are given by:

n
a, = (—1)" H a;,
i=1

n

ap—1 = (_1>n+1 Z H Ozj.

=1 j=1
i
Therefore,
Ap—1 zn: 1 s
_ — =5
Gn =1 Q;
which implies |ap—1] = [s—1an| < t(_1%|an\. The same argument can be applied to the

conjugate polynomials, which gives |o;(an—1)| < t@llai(anﬂ. We now have the following
theorem:

Theorem 2.19. Let n > 5. Then given an,, the coefficient a,—1 simultaneously satisfies the
following m inequalities:

oilan-1)| < t|oi(an)] (1 <i<m)
where {t(_z)l | 1 <i<m} are the Pohst bounds.

2.4.4. Additional Constraints. Another set of constraints can be derived by ap-
plying the method of Pohst to the characteristic polynomial of o over Q. Let ¢, (z) denote
this characteristic polynomial, which is the product of all the conjugate polynomials:

Ca(x) = H foil(a)pi(K) (:C)
=1

The polynomial ¢, (x) has integer coefficients and f, g | ¢o. In some applications, we may
assume ¢, = fo,Q, but in general this is not the case.

Since the roots of c,(z) are the oi;(a)’s, it follows that the roots of ¢, satisfy
Martinet’s bound. Also, the constant coefficient of ¢, is [[;Z; 0i(an) = Ng/g(an). So we
have everything we need in order to apply the method of Pohst to the polynomial c,.

If we write co(x) = Y70 bjz™™ ", then we have the following constraint on by

B(bf - Cal)w < by < B(b? + Cal)J '

This comes from the fact that |62 — 2bs| = |s3| < Cy,. As shown in [3] (p.451), the Cauchy-
Schwartz inequality can be used to improve this bound, giving

@ —ca)| << | (P22 40, )| (2:6)
301 -Cu| st < |3 ( )

nm
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Let t; denote the Pohst bounds for ¢,. The analog of Theorem 2.19 gives the following

bounds on by, _1:
_‘bnmt—ﬂ < bnm—l < |bnmt—1‘- (27)

Constraints can also be obtained for the other b;’s in an inductive manner using
Newton’s formulas. Since |si| < ¢ and sp = —kby — Zf;ll bi—;s; we get the following

bounds on bg:
rk - Z;:ll bkijJ

(2.8)

k

{—tk - Zﬁ:ll br—jS;
k

wﬁbké

Since the b;’s are functions of the coefficients of f, i, the above bounds translate
into a set of relations between the a;’s. The exact form of these relations depends on the

specific case, as seen in the following example.

Example 2.1. Suppose we are interested in decics having a quadratic subfield, so thatn =5
and m = 2. Letting a} = o2(a;), we have

ca(z) = (2% + a1zt + aer® + az2® + ayw + as) x (2° + afxt + aj2® + af2? + ajzr + af)

= 2%+ (a1 +a})a® + (aaa} + az + a3)a® + (a1a5 + ajay + a3 + af)a”

+(aral + alaz + azal + ag + a})xb + (ar1a} + alaq + asal + ajas + as + af)z®
+(a1ak + alas + azal + ajaq + azal)xt + (agal + abas + azal + ajaq)x?

2
+(asa; + azas + aga))r” + (agai + ajas)x + asas. (2.9)

Writing this polynomial as co(x) = 2}20 bix'97%, Equation 2.6 gives the following relation:

B((al +al)? - C‘“ﬂ < (010} + as + a}) < B <§(a1 +aj)? +Oa1>J :

Likewise, Equation 2.7 gives another relation:
—l(asaz)t-1| < (asa5 + ajas) < [(asa5)t-1].

Finally, Equation 2.8 can be used inductively to give a relation for each coefficient in the
decic of Equation 2.9.

Experience shows that incorporating these constraints into the algorithm can lead
to substantial speed improvement, sometimes an order of magnitude faster.



CHAPTER 3

COMPUTING CONGRUENCE VECTORS

An important part of any targeted search, either Hunter or Martinet, is to obtain all
possible congruences on the polynomial coefficients. The congruences for a Martinet search
are obtained in a similar fashion to those of the Hunter search; in fact, the method used
to find the Martinet congruences can be viewed as a generalization of the Hunter method.
For Martinet, the method is a little more complicated because the congruences are modulo
an ideal, whereas the Hunter congruences are modulo an integer.

As usual, we let K be a degree m field and we let L be a finite extension of K
with [L : K] = n. Let @ € Op\Og be the element given by Martinet’s theorem and let
fa,ix(z) € Og[z] be the minimal polynomial for & over K. This minimal polynomial will
also be denoted f,, where it is understood to be over K (not Q).

Recall that we wish to obtain those field extensions L/K which are unramified
outside of a finite set of primes S. Let Sk denote the set of prime ideals of Ox which
lie above any prime in S. The goal of this chapter is to show how to obtain all possible
congruences of f, modulo p where p € Sk.

We will first discuss how the problem can be reduced from the global realm to the
local realm. We then show how to obtain the congruences in the local case. Finally, we
will show how the wildly ramified case can be handled more carefully to give congruences
modulo a power of p.

3.1. The Global to Local Principle

Fix a prime ideal p € Sk and let p € S be the prime below p. There are only a finite
number of ways in which p may ramify in L, and we need to obtain a set of congruences
for each of these ramification structures. Let us target a specific ramification structure, say
PO = ‘il . 29 .

Let K, be the completion of K with respect to p, and let L; be the completion of L
with respect to P; (i = 1,...,9). Let Ok, and Or, be the corresponding rings of integers;
and let PKP and Pr, be the unique maximal ideals.

We know from algebraic number theory that f, has a factorization over K, with g
irreducible factors, say fo = f1--- fg. It will be shown in the next several sections how one
may obtain congruences for each f; modulo Pf(p (k > 1). The following simple theorem
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shows how one may combine these individual congruences into a single congruence for f,
modulo p¥.

Theorem 3.1. Suppose f, factors over K into irreducibles as

fa(x) = fi(z) - fy(2).

Also suppose that for each i, fi(x) = h;(x) (mod Pf(p) for some k > 1 and where each
h; € Okl[z]. Then
fa(z) = hi(z) - hy(x) (mod p*).

Proof. We may write [[ h; = 2™ 4+ biz" 4.+ b, 12+ b, where each b; € O. Then

fal@) = 2"+ a1z +- F a1z +an
= 2" +b " '+ by 1z + by (mod P}‘}p).

Therefore, a; — b; € P}“{p N Ok = p* for every i. It follows that fo(z) = hi(z)---hy(x)
(mod p*). O

Equipped with this theorem, we only have left to consider the local case. This will
be the subject of the remaining sections; but before that, we make some remarks. First,
if V; is the number of congruences for f;, then the number of congruences for f, will be
[ Vi. However, this number can be reduced by keeping only those congruences whose first
coefficient is one of the allowed values as given by Theorem 2.1.

Next, the congruences modulo P}“(p for £ > 1 correspond to wildly ramified cases;
tamely ramified cases will always have k = 1. When at least one factor f; has a congruence
with £ > 1, we increase the moduli for all factors to the maximum k. We now describe how
this is done.

Let I' € O be a complete set of representatives for O /p. Then T is also a complete
set of representatives for O, /PK,,§ because if v;+ Pk, = v+ Pk, then v;—v; € P, N0k =
p which means i = j. Next, let p € p\p2. Then p € Pk, \P%(p is a uniformizer for Ok, .
From algebraic number theory, we know that any B € O, may be written as a power series
in p with coefficients from the set T".

Now suppose we have a congruence modulo P;?p which we would like to increase to

Pf{i (k2 > k1). Let B € Ok represent a single coefficient for this congruence. Then B will
have the form
B = bo+b1p+b2p2+
bo+bip+bap® + -+ by 1" (mod PRL)
bo+bip+bap® + -+ by 197 (mod PR2)

where each b; € I'. So to change from modulus Pf(lp to modulus Pk2p, it suffices to just
tack on a few more terms to the power series expansion. Note that increasing the modulus
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Ficure 3.1: Local field diagram.

Ly
\
e.f OLg
\
Ky PLy
\
co.fo Ok,
\
Qp Pk,
\ |
\
P2y

power in this fashion will also increase the final number of congruences; however, the added
benefit of the larger modulus far outweighs the extra congruences.

As a final remark, when p is unramified at ; (i.e. e; = 1), the corresponding factor
fi(x) will be an arbitrary degree f polynomial, where f is the residue class degree of ;
over p. Therefore, all possible degree f congruences will be present. In other words, the set
of congruences will be {zf +~;_12/~1 + - + y12 + 79 | 7; € I'}. So from here on we only
need to consider the ramified case.

3.2. Local Congruences

As shown in the previous section, the problem of finding the congruences for f, is
reduced to the local realm. As before, fix p € Sk and let p € S be the prime below p. Let T3
be a fixed prime of O, lying above p with ramification index e = e(J3/p) and residue class
degree f = f(PB/p). As mentioned in the previous section, it suffices to assume that e > 1.
Next, let eg = e(p/pZ) and fo = f(p/pZ). Let K, be the completion of K with respect to
p, and let Ly be the completion of L with respect to B. Let Ok, and Or, be the rings of
integers for Ky and Lg respectively; and let Pk, and Pr, be the unique maximal ideals.
The local field diagram is displayed in Figure 3.1.

Recall that f, factors over Ky into irreducibles that are in one to one correspondence
with the primes of Or, lying above p. Let fp(x) denote the factor of f, corresponding to
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B. In order to use Theorem 3.1, we need to obtain congruences for fy(z) modulo a power
of Pr,.

We note that Ly = Kpy[z]/ (fg) and that Ly = Ky(n) where 1 is a root of fp(x).
Now since f, € O, [r] is monic and O, is a UFD, by Gauss’ Lemma we may assume that
fp € Ok, []. Therefore, since O Ly is the integral closure of O, , it follows that n € O Ly -

3.2.1. The Totally Ramified Case. In this subsection we consider the case when
f = 1. This simplifies the analysis immensely. Since [Ong /PLy : Ok, /Pk,] =1, we have

OL(/B//PL‘13 = OKp/PKp =~ 0r/p Fos-

Let I' = {71,72, . ,")’pfo} C Ok be a complete set of representatives for O /p. Then T is

also a complete set of representatives for Op,, / PLy - In particular, we have

plo
OL‘B = U (%"‘Png)- (3.1)

i=1
Let 8 € P, and let cg(z) be the characteristic polynomial for 3 over K. Then
|Bilp = |Blp < 1 for all conjugates §; of 3. Since the coefficients of the minimal polynomial
for 8 over K are symmetric polynomials in the 3;’s it follows that cs(z) = 2° (mod Pk, ).
Next, according to Equation 3.1, any element 8 € Op,, is a translate by some y € T’
of an element in Pp,. Therefore, cs(r) = (2 + )¢ (mod Pg,). In particular, fp(z)
satisfies this congruence because fyg is the minimal polynomial for n € Of,,. This proves

the following theorem.

Theorem 3.2. Let I' € O be a complete set of representatives for Ok /p and suppose
Ly/ K,y is totally ramified with ramification index e. Then

fp(@) = (z+7)° (mod Pg,)
for some v €T.

Note that Theorem 3.2 gives a maximum of |I'| = p/0 different congruences for fy(z).

3.2.2. The f > 1 Case. As in the previous section, we have
Ok, /Pr, = O0k/p = F,n,

and we let T' € Ok be a complete set of representatives for Qg /p. Then T is also a
complete set of representatives for O, /Pr,. This time, Or, /PL,, is a degree f extension
of O, /Pk,, hence
OLy/PrLy = Fprr-
From algebraic number theory, we know there exists an intermediate field E, K, ©

E C Ly such that Lg/FE is totally ramified and /K is unramified. The modified local
field diagram is displayed in Figure 3.2.
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FiGure 3.2: Local field diagram showing the intermediate field E.

Ly

e, f=1 OLy

\
E PLy
\
e=1, f Op
\
Ky Pe
\
Ok,
\
Pk,

p

Now let I' C O g be a complete set of representatives for Op/Pg. Then [ is also a
complete set of representatives for O, / PLy - Also, since Op is the integral closure of O, ,
any 4 € I' has characteristic polynomial over K, satisfying

5K, () = ol +ma’ ™+ i+ 9y (mod Pg,) (3.2)

for some 71,...,7; €.
Before proceeding, we will need some more notation. Let o1,...,0 denote the
embeddings of F (fixing Kj) into an algebraic closure of Ly, and for each i let {041, ..., 05}

denote the embeddings of Ly extending o;. Without loss of generality, we will assume that
o1 is the identity on E and that o1y is the identity on Lg. Since F/K, is unramified, it is
necessarily Galois, and therefore o;(E) = E for each 4. Finally, we let 8;; = 04;(3) denote
the conjugates of any element 3 € L.

Any element 3 € Pr,, has characteristic polynomial over FE satisfying cg p(r) = ¢
modulo Pg. Now let 3 € Or,,. Then j is a translate by some 4 € I' of an element in Pr,,.
Therefore,

cpp(r) =(z—4)° (mod Pg) (3.3)

where the characteristic polynomial of 4 satisfies Equation 3.2.
Now write cgp(z) = z¢ + diz® '+ - +d._1x + d., where each d; € Op. The
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characteristic polynomial for the conjugate §;1 is given by

cppp(@) = 2°+0i(d)r* + -+ 0i(de1)T + 04(de)
oi(c,p(1))
= oi(fz—4]°) (mod Pp)
= [z —a®@)]"

Finally, the characteristic polynomial for 8 over K, is given by

f e
s, (@) = [[T]I=— Bl

i=1j=1
f

= H B1,B(T)

i=1

f
= H[w—Ui(’?)]e (mod Pg)

i=1

= ( [ﬂ?—ffi(ﬁ)]>

= [C%Kp (a:)] ‘

1 e
= (acf +yaf 7t —|—7f_1$—|—7f> (mod Pk, ).

-

Note that fop(x) satisfies a congruence of this type because fy is the minimal polynomial
for n € Op,. We have proven the following theorem.

Theorem 3.3. Let I' € O be a complete set of representatives for O /p, and let e, f be
the ramification index and residue class degree respectively for P, over Pk,. Then

e
fp(z) = (Q:f + lef_l + -ty + 7f> (mod PKp)
for some v1,...,7; €T.

Note that Theorem 3.3 is a generalization of Theorem 3.2. It gives a maximum of
IT|/ = p/o/ different congruences for fp(x). Since we will be interested in applications with
L no larger than degree 10 (i.e. [L : K] <5), the largest residue class degree we will see is

f=2.

3.3. Wild Ramification

The congruences derived in the previous section still hold for the wildly ramified
case. However, when p divides e, we can improve algorithm efficiency by replacing these
congruences with new ones modulo a power of Pg,. In some applications, these larger



27

moduli are essential; without them, the algorithm could take months or even years to
complete.

We start by introducing the concept of the Newton-Ore exponents. This termi-
nology originated with [7]. The reason for using the name Newton-Ore is because of the
connection to both Newton polygons and Ore’s formulas for discriminants of Eisenstein
polynomials [13].

Let L/ K, be totally ramified, let p be a uniformizer for K, and let m be a uni-
formizer for Lgg. Write the minimal polynomial for m over K, as

fr(x) =2+ a1z + 402" + - F a2 + ae 17 + ac

where each a; € Og,. Write a; = p%ia} where (p,a}) = 1. Since Ly/K, is totally ramified,
f» must be Eisenstein, and therefore d; > 1 for all ¢ and d. = 1. Since f; is monic, we may
also define ag = 1 and dy = 0.

Let D denote the exponent of Pr,, in D(Lg/Kp). Then

D = v (fi(m)) = velen®™ + (e = Dagm® 2 + -+ 4 2ae_om + Ge_1). (3.4)

Since vr(p) = e, we get
vr(a) = evy(a) Va € Og,.

Consequently, for 0 < k < e — 1, we have
ve((e — k)apm®F 1) = edy, + e — (k + 1) + ev,(e — k).
For 0 <k <e—1, define
Dy =edy+e—(k+1)+ev,(e—k). (3.5)

One observes that the D’s are distinct modulo e, hence distinct in ZT. Therefore, the
valuation in Equation 3.4 is equal to the minimum of the individual valuations and we get

D=vp(en®t + (e~ Daym® 2+ + 2427 +ac_1) = min {D;}.
0<i<e—1

To simplify the equations to come, we make a definition. If s represents any state-
ment which can be either true or false, then we define 5 to be 1 if s is true, and 0 otherwise.

1 ifj>k
Oj>k = L :
0 ifj<k

For example,

Suppose ming<;<e—1{D;} = Dy. Then from Equation 3.5, the exponent dj, is forced

to be 1
dk:g[D—e—i-(k%—l)—ez/p(e—k)].

For j # k and j # e we have D; > Dy,. Therefore,

edj+e—(j+1)+ev,(e—j)>edy+e—(k+1)+evy,(e—k).
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= ed; >edy+j—k+evy(e—k)—evy(e—j)
 — k
— ;> i+ T+ vyle— k) — (e — )

Since every term in the last equation is an integer except for the (j—k)/e term, this becomes

4> dp+14+v,(e—k) —vy(e —7) ifj>k‘7 (3.6)
dp +vy(e — k) —v,(e—j) ifj <k
and since d; > 1, we get
d;j > max{dy + 0j>r + v,(e — k) —v,(e — j), 1} (3.7)

Since d. = 1, we see that Equation 3.7 is also valid for j = e.
Recall that we want the Newton-Ore exponents to be the smallest possible exponents.
This motivates the next definition.

Definition 3.4. If the exponent of PLy, in D(Lg/Kp) is D = Dy, then the Newton-Ore
exponents (ci1,...,¢c), are defined as

1. cg=1[D—e+(k+1)—evy(e — k)], and
2. forl<j<e j#k

Cj = max{ck + 5j>k + Vp(e - k) - Vp(e - j)a 1}'

We say that 3 € PL,, satisfies the Newton-Ore exponent condition if vp(bi) > ¢; for
every i, where the b; are the coefficients of the characteristic polynomaial for 3.

The above analysis implies that any uniformizer for Lgq satisfies the Newton-Ore
exponent condition. The next theorem says that this is also the case for any element of
PLy - This theorem will be crucial in the analysis to come.

Theorem 3.5. Let Lo/ K, be totally ramified. Then any o € Pry satisfies the Newton-Ore

exponent condition.
Proof. See Chapter 4. O

To simplify the analysis, we handle each extension degree separately. But first
we define some notation that will be common among all cases. Let p € p\p?. Then
p € Prk, \P%(p, so it is a uniformizer for Ok,. Next, let m € Pr, \73%5]B be a uniformizer
for Lyz and let d be the exponent of P, in D(Lgp/Ky) (this is what we called D above).
Finally, let I' € Og be a complete set of representatives for O /p. Then I is also a complete
set of representatives for Ok, /P, , and also for O Ly / PrLy when f=1.

Since all applications that we will consider will have [L : K] < 5, we may assume
f =1, except for the quartic case, for which f = 2 is also a possibility.
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3.3.1. Quadratic Extensions. Here we assume e = 2 and f = 1. Also, for Ly/ K,
to be wildly ramified we must assume that p = 2.
For this case we have

frx(z) = 22 +aix+as € Ok, [x]

and
d= v (fi(m)) = vy (27 + a1) = min{v,; (27), v;(a1)}.
Since 20k, = 73[6(0'] and Pk, 0 Ly = 73%%, it follows that 20 Ly = 73%;?. Hence,
vr(2) = 2eg and v, (2m) = 2¢9 + 1. Since a1 € Pk, , its valuation will be a multiple of 2. We

now have
d = min{2ep + 1,v-(a1)} € {2,4,6,...,2ep,2ey + 1}.

The form of f, for each value of d is summarized in Table 3.1.

So fr has the general form f;(z) = 22 + p*Ax + pB where 1 < k < eg + 1. Note
that the Newton-Ore exponents for this case are ¢; = k and ¢o = 1. From Table 3.1, one
observes that k = L%J

According to Theorem 3.5, the coefficients of the characteristic polynomial for any
B € Pry will satisfy the same divisibility conditions as the coefficients of fr. Next, any
element § € O, is a translate by some v € I' of an element in Pp,,. In particular,

fp) = (z+7)*+p"A(z +7) +pB
= (z+7)°+pB (mod Pg))
for some A, B € Ok, and some 7y €T,

The element B € Ok, can be written as a power series in p with coefficients from
the set I':

B:b0+b1p+b2p2+"' (biEF).
Therefore,
k=2
fp@) = (z+7)* + Z biptt (mod P}“(p ).
i=0

We summarize this result in the next theorem.

TABLE 3.1: The form of f; for quadratic extensions.

Form of fr(x)
©* + pAz+pB (A, B¢ Pk,)
a? + p?Az+ pB (A, B¢ Pk,)
z?+p*Az+ pB (A, B¢ Pk,)

S o N

2eq a? + p®Az+pB (A, B¢ Pxk,)
2¢0+1 | 224 p°T Az + pB (B ¢ Pkg,)
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Theorem 3.6. Let e(Pr, /Pk,) = 2, f(PLy/Pk,) = 1, and suppose that D(Ly/Ky) =
Pg‘n' Then

1. d€{2,4,6,...,2¢e0,2¢p + 1}, and

2. fp(x) = (z+7)%+ Zf:_o? b;p (mod P}“(p) where k = |45 | and v,bo, ..., by—2 €T.
(when k = 1, there are no b;’s)

3.3.2. Cubic Extensions. Here we assume e = 3 and f = 1. Also, for Ly/K} to
be wildly ramified we must assume that p = 3.
For this case we have

fr(x) = 22+ a12% + asx + asg € Ok, 7]
and
d = va(fo(m)) = ve(37% + 2017 + a2) = min{v,(37%), v (2a17), vy (a2) }.

Since 30f, = Pf?p and Pk,0r, = P})jm, it follows that 30r, = z;f’ Hence,
vx(3) = 3eg and v, (372) = 3eg+ 2. Since each a; € Pk, , their valuations will be a multiples
of 3. Let vy(a;) = 3k;. We now have

d = min{3eq + 2,3ky + 1,3k} € {3,4,6,7,9,10,...,3eq, 3e0 + 1, 3¢ + 2}.

The form of f, for each value of d is summarized in Table 3.2.
So fr has the general form

fr(x) = 23 + p" Ax? + p* Ba + pC

where 1 < k; < eg + 1. Note that the Newton-Ore exponents for this case are (k1, k2, 1).
From Table 3.2, one observes that k; = L%J and ko = L%J We observe that ko > kq,
so the best congruences will be modulo Pffp.

TABLE 3.2: The form of f; for cubic extensions.

Form of fr(x)
2® + pAz* 4+ pBx 4+ pC  (B,C ¢ Pk,)
2® + pAz* 4+ p*Bx + pC (A,C € Pg,)
2?4+ p?Aa? + p’Bx + pC (B,C ¢ Pk,)
a® + p?Aa? + p’Bx + pC  (A,C ¢ Pxg,)

~N O WA

3eo z® + p®Az? + p®Bx + pC  (B,C ¢ Pk,)
3eo+ 1 | @ + p®Ax? + p* ! Bx + pC (A, C ¢ Pg,)
3eg+2 | @+ potltAz? + p Bz + pC  (C ¢ Pk,)
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According to Theorem 3.5, the coefficients of the characteristic polynomial for any
B € PLy, will satisfy the same divisibility conditions as the coefficients of fr. Next, any
element § € O, is a translate by some v € I' of an element in Pr,. In particular,

fp@) = (@+7)®+p" A +7)>+ p” Bz +7) + pC
(@ +7)° + pM A(@ +7)° +pC  (mod Pi2)

for some A, B,C € Ok, and some v € T".
The elements A and C can each be written as a power series in p with coefficients
from the set I':

A:ao+a1p+a2p2—|—--- (a; €T).
C=co+cip+cp’+--- (c; €T).

Therefore,

ko—k1—1 ko—2
fp(z) = (2 +7)° + < > am’““) (+7)*+ Y cp'™ (mod PR).
=0 =0

We adopt the convention that when the lower limit of a summation exceeds the upper limit,
then the sum is nonexistent. In summary, we have the following theorem.

Theorem 3.7. Let e(PL, /Pk,) = 3, f(PLy/Pk,) = 1, and suppose that D(Ly/Ky) =
Pgm. Then d € {3,4,6,7,9,10,...,3eg,3eo + 1,3eq + 2}, and

ko—k1—1 ko—2
qu(:v)Z(x+7)3+< ) a@-p’“*Z) (e +7)7+ 3 ep ™ (mod P2)
i=0 =0

where k1 = L%J, ko = L%J, and v, a;,¢c; €T,

Regarding Theorem 3.7, if d # 1 (mod 3) then k; = ko and all a;’s are zero. When
d =1 (mod 3), then ky = ky + 1 and the middle term reduces to agp*>~1(z + 7)2.

3.3.3. Quartic Extensions with f = 1. Here we assume e =4 and f = 1. Also,
for Lyy/ Ky to be wildly ramified we must assume that p = 2.
For this case we have

fr(x) = 2 4+ a123 + apa® 4+ azx +ay € O, [7]
and

d=v:(fi(r) = ve(4n> + 3a17* + 2ao7 + a3)

min{v, (47°), vy (3a17%), vx (2a27), vy (a3) }.
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Since 20k, = Ple((’p and Pr,0r, = Pé{p, it follows that 207, = Pé‘;?. Hence,
vx(2) = deo, vx(27m) = 4eg + 1, and v, (47%) = 8eg + 3. Since each a; € Pk, , their valuations
will be multiples of 4. Let vy (a;) = 4k;. We now have

d = min{8ey + 3,4k1 + 2,4ks + deg + 1, 4k3}
€ {4,6,8,...,860+2}U{460+5,460+9,...,860—|—1}U{860+3}.

Since we are only interested in cases having [L : Q] < 10, we only need to consider ey < 2.
The form of f; for these values of ey is summarized in Tables 3.3 and 3.4.

So fr has the general form
fr(x) = 2* 4+ pFrA2® + p*2 B2 + pF3Cx + pD.

For this case, the Newton-Ore exponents are (ki, k2, k3, 1). Its not too hard to show that

b= 442, ks = [452], and

{ 1 if d < deg+ 5
ko = [

2| _ ey ifd>4deg+5

These expressions are valid for all eg. Also, observe that k3 > k; for all 7, so the best

congruences will be modulo Pfé”p.
According to Theorem 3.5, the coefficients of the characteristic polynomial for any

B € PLy will satisfy the same divisibility conditions as the coefficients of fr. Next, any
element 5 € Op,, is a translate by some v € I' of an element in Pp,,. In particular,

fpx) = (@+9)*+p" A +4)® +p2 Bz +7)* + p*C(z +v) + pD
= (@ +9)'+ A +79)° + 9Bz +7)° +pD  (mod P)

for some A, B,C, D € O, and some 7 €I
The elements A, B, and D can each be written as a power series in p with coefficients

from the set I':
A=ag+ap+agyp’+--- (a; €T).

TABLE 3.3: The form of f; for quartic extensions when ey = 1.

d Form of f(x)

4 | 2"+ pAs® +pBa*+ pCx + pD  (C,D ¢ Pk,)
6 | a*+ pAs®+pBa® + p*Cx+pD  (A,D ¥ Pk,)
8 | a*+p?As® + pBa® + p*Ca+ pD  (C,D ¢ Pk,)
9 | at+ p?Az® + pBx? + p*Cx+pD  (B,D ¢ Pk,)
10 | ' + p?Aa® + p?Ba? + p3Cax + pD (A,D ¢ Pg,)
11| a*+ p*As® + p?Ba? + p*Cx +pD (D ¢ Pk,)
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TABLE 3.4: The form of f; for quartic extensions when eg = 2.

d Form of fr(x)
4 | a*+pAzd+ pBaz® + pCax+pD (C,D ¢ Pk,)
6
8

2t + pAz® + pBa? + p*Cx + pD (A, D ¢ Pg,)
a + p?Az® + pBa? + p*Cx +pD  (C,D ¢ Pk, )
10 | a* + p?Aa® + pBa? + p’Cax+ pD  (A,D ¢ Px,)
12 | a* + p3Aa® + pBa? + p3Cx+ pD  (C,D ¢ Pk,)
13 | a2t + p3Ax3 + pBa? + p*Cx +pD  ( )
14 | a* + p*Aa® + p?Ba? + p*Cx + pD (A, D ¢ Pg,)
16 | z* + p*A2® 4 p?Ba? + p*Cx + pD  ( )
17 | ot + p*Aa® + p?Ba? + p°Cx + pD  (B,D ¢ Pk,)
18 | z* + p*Ax® + p?Ba® 4+ p°Cax + pD )
19 | a*+ pPAa® + p*Ba? + p°Ca 4+ pD (D ¢ Pk,)

B:bo+b1p+b2p2+"' (b; €T).
D:do—i-dlp—‘rdzpz—f—"' (diGP).

Therefore,

ks —k1—1
fpz) = (z+7)* ( Z ap’““) (x+7)°

kQ 1 k3—2
ki 2 it k
< Z bip™? ) (x+7) —I-Zdzp (mod Py ).

i=0
Again, we use the convention that when the lower limit of a summation exceeds the upper

limit, then the sum is zero. In summary, we have the following theorem

Theorem 3.8. Let e(PL, /Prk,) = 4, f(PLy/Pk,) = 1, and suppose that D(Ly/Ky) =

Pg‘n . Then

dE{4,6,8,...,860+2}U{4€0+5,4€0+9,...,8€0+1}U{8€0+3}

and
—k1—1
fpx) = (z+9)* < E a; p’““) (z+7)°
—ko—1 k3 —2 ‘
( Z bpszrZ) JI—I-’)/)Z—I- Z dipZJrl (mod Pé?p)
1=0
where v, a;,b;,d; €I'; ky = L%J, ks = %3 , and

1 1 ifd <deg+5
2 = .
L%J—eo ifd>4deqg+5
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3.3.4. Quartic Extensions with e = f = 2. Here we assume e = 2 and f = 2.
Also, for Lo/ Ky to be wildly ramified we must assume that p = 2.

As in section 3.2.2, we let E be the intermediate field between K}, and Lgg such that
L/ E is totally ramified and E /K, is unramified. Also, we let I' € O be a complete set of
representatives for Og/Pg. Then I"is also a complete set of representatives for O Ly / PLqB.

Since [E : Kp] = f = 2, there are 2 embeddings of E fixing K, which we denote
o1 =1 and oy. Since E/K, is necessarily Galois, 02(F) = E. We denote the conjugate for

any (3 € E by * = 02(0).
Since Theorem 3.5 only applies to totally ramified extensions, we must consider the
minimal polynomial for 7 over E:

fr(x) = 2% + a1z + ag € Og[z].

Recall that d represents the exponent of Pr,, in D(Lg/Kp). Since E/K, is unramified, d
is also the exponent of Pr,, in D(Lg/FE). Therefore,

d=vz(fr(7)) = vz (27 + a1) = min{v;(27), vr(a1)}.

As in the f =1 case, we get v;(2m) = 2e9 + 1 and v, (a1) = 2k for some k > 1. The
possible values for d and the corresponding polynomial f;(z) are the same as they were in
the f =1 case, so Table 3.1 still applies. The only difference is that f; is defined over O
instead of O, , and we replace p with pg, where pg is a uniformizer for E. So f has the
general form

fx(x) = a* + ppAx + ppB
where k = L%J and A, B € Op.

According to Theorem 3.5, the coefficients of the characteristic polynomial for any
B € Pr, will satisfy the same divisibility conditions as the coeflicients of fr; and, any
element 8 € Op,, is a translate by some 4 € I' of an element in Pp,,. In particular,

cop(@) = (x—=4)°+ppA(x —4) + ppB
= (z—4)?+peB (mod PL)
for some A, B € Op and some 4 € I'. The characteristic polynomial for 5* is given by
g p(x) = o2(cpp(x))
= (z—4%% 4+ ppB* (mod PF).
Therefore, the characteristic polynomial over K is
cox, () = [(x =) +ppB] [(¢ —3")" +ppB*]  (mod Pp)
= [ =)= =3+ ppB(z =3 + ppB*(x —4)?
+pEppBB*
= (&= (@ =)+ (peB+ ppB*)a* — 2(peBY* + ppB )z
+ (peB(¥)* + ppB*4* + ppppBB") . (3.8)
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Since all coefficients in Equation 3.8 are in O, , this congruence can be viewed modulo P}“(p.
Also, since 20k, = Pfé’p, we observe that 2(ppBY* + pj, B*Y) € 73;(0:1, and since k < eg+1
this term is zero modulo Pf(p. Similarly, one observes that the z? and constant terms are
congruent to zero modulo Pk, . Putting all these ideas together, we may write

o, () = [(z—4) (@ -4+ A2*+ B ﬁmdpk)
= [(&® - (A+4)z+49")) + A2> + B’ (3.9)
where
0 if k=1
Al =4k2 3.10
Zai,o”’l ifk>1 (3.10)
1=0
(
0 ifk=1
B =!k2 3.11
> biptt i k> 1 (38.11)
\ =0

and a;,b; € T

All we have left is to write 4 in terms of elements from I'. To do this, we first need
an expression for I in terms of I'.

Since Op/Pgr = F 25 is a quadratic extension of O, /Pr, = F 50, and there is
precisely one finite field (up to isomorphism) of order p?f0, any irreducible quadratic over
F 5o will generate F o5,. So let f7(x) be an irreducible quadratic over O, /Pk, with root
7, say

fa(z) = z? + (d1 + Pk, )x + (do + Pk, )
where do,d; € O,. Without loss of generality, we may assume do,d; € I' (since I is a
complete set of representatives for Og, /Pr, ). For example, when fo = 1, I' = {0,1} and
we may take dy = dy = 1 because 2?2 + z + 1 is irreducible over Fy.

Now let n be any element of O such that 7 = n+ Pg. Then f,(z) = 22+ dix + do
is irreducible over Ok, , because if it were reducible this would contradict the irreducibility
of fg. It follows that £ = K,(n).

Next, since Op/Pr = Ok, /Pk,(7), any A € Og/Pg may be written \g + A7 for
some g, A\| € Ok, /PKp. Then \; = v; modulo Pk, for some v; € I'. So we may take

I'= {70+ 7,m €T} (3.12)

as our complete set of representatives for Op/Pg.
We now return to our analysis of Equation 3.9. First note that

fo(z) = ® — (n+n")z +mm* = 2%+ diz + do

so that n +n* = —d; and nn* = dp. Now from Equation 3.12, we may write ¥ = v9 + 7171
for some vg,v1 € I'. Therefore,

FY4+5"=2v%+7Mm+n") =2y —dimn
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A7 = (v +mm) (o +mn")
= % +vnm+n*) +5m*
= 12 —diyom + doi.

We have proven the following theorem.

Theorem 3.9. Let e(PL, /Pk,) = 2, f(PLy/Pk,) = 2, and suppose that D(Ly/Ky) =
Pgm' Furthermore, choose dy,dy € T' so that 2 + dix + dg is irreducible over Ok /p. Then
d€{2,4,6,...,2¢e,2¢e0+ 1}, and

fo@) = [22+ (29 — dim)z + (3 — diyon + dord)]
+A'2? + B"  (mod Pﬁp)

where v9,71 € I'; A" and B’ are given by Equations 3.10 and 3.11 respectively; and k =

451

3.3.5. Quintic Extensions. Here we assume e = 5 and f = 1. Also, for Ly/K,
to be wildly ramified we must assume that p = 5.
For this case we have

fr(x) = 20+ a1zt + asx® + asz? + aux + a5 € Ok, 7]

and

d = ve(fr(m))
= VW(57F4 + da > + 3asm? + 2asm + ay)

= min{v,(571), vr(4a17®), vr (3a97?), vr(2a37), vy (a4) }.

Since 50k, = Ple(op and Pr,0r, = 73213, it follows that 50, = 2‘;?. Hence,
vy (5) = 5eg and v, (571) = 5eg+4. Since each a; € Pk, , their valuations will be a multiples
of 5. Let v(a;) = 5k;. We now have

d = min{5eo + 4,5k1 + 3,5ko + 2,5k3 + 1, 5]{:4}
€ {5,6,7,...,560+4}\{9,14,...,560—1}.

Since we are only interested in cases having [L : Q] < 10, we only need to consider ey < 2.
The form of f, for these values of ey is summarized in Tables 3.5 and 3.6.
So fr has the general form

fr(x) = 2 4+ pFrAzt + pP2 Ba® + p*3Ca® + p*Dux + pE.

The corresponding Newton-Ore exponents are (ki, k2, k3, k4, 1). One can easily show that

k1= L%J, ko = L%J, ks = L%J, and k4 = L%J. Observe that k4 > k; for all 4, so the

best congruences will be modulo Pf(“p. Also note that k4 — k; € {0, 1} for each .



TABLE 3.5: The form of f; for quintic extensions when eg = 1.

Form of f(x)

©O© 00 N O O

2’ + pAz* + pBa® + pCa? + pDx + pE (D, E ¢ Pk,)
a® + pAz* + pBa® + pCa? + p*Dx + pE (C,E ¢ Pk,)
2° + pAz* + pBa® + p’Cz* + p*Dx + pE (B, E ¢ Pk,)
2 + pAxt 4 p*Ba® + p*Ca? + p*Daz + pE (A, E ¢ Pk,)
2® + p? Azt + p?Bad + p*Ca? + p?Dx + pE  (E ¢ Pk,)

TABLE 3.6: The form of f; for quintic extensions when ey = 2.

Form of fr(x)

a® + pAz + pBa® + pCa? + pDx + pE (D, E ¢ Pkg,)
2® + pAz* + pBa® + pCa? + p?Dx + pE  (C,E ¢ Pk,)
a° + pAz* + pBa® + p?Ca* + p*Dx + pE (B, E ¢ Pkg,)
2 + pAx* + p*Ba® + p?Ca? + p’Dx + pE (A, E ¢ Pk,)
2 + p? Azt + p?Ba® + p?Ca? + p?Dx + pE
25 4 p? Azt 4 p?Ba® + p?Ca? + pP’Dx + pE
a® + p?Aat + p*Ba® + p3Ca? + p°Da + pE (B,E ¢ Pk,
25 4 p? Azt + pPBa® + p3C2? + pPDx + pE
o + p3 Azt + pP*Bad + p*Ca? + p*Da + pE (E ¢ Pk,)
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According to Theorem 3.5, the coefficients of the characteristic polynomial for any
B € PLy will satisfy the same divisibility conditions as the coefficients of fr. Next, any

element 8 € Op,, is a translate by some v € I' of an element in Pp,,. In particular,

fp()

for some A, B, C,

= (@+7)°+ A+ + 2B +7)* + pMC(@ +7)?
+pME(x 4+ ) + pD

(+7)° + " Al +9)' + Bz +7)° + pC(x +7)°
+pD  (mod P}2)

D, FE € Ok, and some vy €T,

The elements A, B, C, and D can each be written as a power series in p with
coefficients from the set I':

A=ag+aip+ap®+--- (a; €T).
B=by+bip+byp*+--- (b el).
C=co+cip+cap®+--- (c; €T).

D=dy+dip+dop*+--- (d;€T).
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Therefore,

fap@) = (@ +7)°+ Az +7)' + B@+7)* +C'(z+7)° + D' (mod Pt )

where
0 ifk =k
A= s (3.13)
CL()pk1 if kl = k4 —1
0 ifky=k
B = sz (3.14)
bop*> if kg =Fky — 1
0 ifks==k
C' = B (3.15)
Copk3 if k‘g = k4 —1
0 ifky=1
D= ka2 3.16
Z dipZ-H if kg > 1 ( )
=0

We have proven the following theorem:

Theorem 3.10. Let e(PLy/Pk,) =5, f(PLy/Pk,) = 1, and suppose that D(Lyp/K,) =
Pgm' Then
d€{56,7,... 5e0+4N\{9,14,...,5¢0 — 1}

and
fp(z) = (z + V)P + Az + )+ B'(z + 7)3 +C'(z+7)*+ D (mod P}?p)

where y € T'; A, B', C', and D' are given by Equations 3.13, 3.14, 3.15, and 3.16 respec-

tively;, and for 1 <i <4, k; = L%J



CHAPTER 4

PROOF OF THEOREM 3.5

The goal of this chapter is to provide a proof of Theorem 3.5, which we restate here
for convenience:

Theorem 3.5. Let L/K be a totally ramified extension of local fields. Then any o € Py,
satisfies the Newton-Ore exponent condition.

We will provide 2 proofs of this theorem.

4.1. The First Proof

The general idea of this proof is to consider aw = 7(a + 73) where 7 is a uniformizer
for L, B € Op is fixed, and a € O. The coefficients of ¢, () are polynomials in a. We let
gi(x) denote the polynomial for the ith coefficient. If a is relatively prime to p (where p is
a uniformizer for K), then « is a uniformizer for L, and hence « satisfies the Newton-Ore
exponent condition. Given a sufficient number of elements ay, satisfying (ax,p) = 1 and
(ar, —aj,p) =1 (for k # j), one shows that the content of g;(x) contains the appropriate
power of p, which proves the theorem. To ensure there are a sufficient number of elements
ay satisfying the above conditions, we form an unramified extension K’ of K and then
consider L'/ K’ where L' = LK'. We will now give the details of the proof.

Proof. Let e = [L : K], let m be a uniformizer for L, and let p be a uniformizer for K.
Fix 8 € Or, and let a € Og. Let a = 7(a + 7f) and let ¢, g (x) denote the characteristic
polynomial for a over K. We need to show that « satisfies the Newton-Ore exponent
condition.

The first step is to show that the coefficients of ¢, i () are polynomials in a. Since
L/K is totally ramified, O, = Og|[n] and hence [ is a polynomial in 7, say § = b(w) where
b € Ox[z]. Consider the resultant

Ry(fr(y)sz — y(z +yb(y)) & r(z,2).

Since the resultant is the determinant of a Sylvester matrix, and the elements of this matrix
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are in Og[z][z], it follows that r(z, x) € Ox[z][z] (See [2], Section 3.3.2). Also,

r(a,z) = Ry(fz(y),z —yla+yby))

e

= [z —mi(a+ md(m)))
i=1

= [J@-w)

i=1
= Co,K (%),
and therefore the coefficients of ¢, g (x) are polynomials in a.

Now let f € ZT be arbitrary (we will choose its value later) and let K’ be the unique
unramified extension of K of degree f. Let L' = LK’ be the compositum of L with K’.
Observe that L'/L is unramified of degree f and L'/K’ is totally ramified of degree e. The
situation is depicted in Figure 4.1. Since L'/L is unramified, 7 is a uniformizer for L’ and
L' = K'(n).

Since L' = K'(7), the exact same resultant argument as above shows that

Ca k() = 7(0, T) = Cayx (T).

Therefore, it suffices to prove Theorem 3.5 for L'/K’. Note that we may now take a to be
in O <
Based on what we showed above, we may write

e
casr(x) =) gila)a®’
i=0

where g;(x) € Og|x]. One may also show that deg(g;) = i. For example,

€ € €
g1(a) = Zai = aZm +Z7Ti25i
i=1 i=1 i=1

FIGURE 4.1: Field diagram for proof 1.

L/
m
totally
ramified € L
K/ e totally
ramified

f
unram

K
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and

g2(a) = ) aiay
1<j
= Zm(a-l-mﬁi)ﬂj(a"‘ﬂjﬂj)

i<j

= d? Zwmj +a Zmﬂj(mﬁﬁ-ﬁjﬂj) +Z7r§7rj2ﬂiﬁj.

1<J 1<J 1<j

Note that O/ /Py = F,r50 where fo is the residue class degree for K /Qp. Let
n = plfo—1 andlet ai,...,a, € O’ be representatives from the non-zero cosets of Pg-
(i.e. a; # a; modulo Pg for i # j). If p | a; then a; € pOgs = Pk, a contradiction.
Therefore, each a; is relatively prime to p.

Now consider gx(z) for 1 < k < e, which we may write in the form:
9k (7) = pa® + 17+

where each ; € Ok. Since q; is relatively prime to p, « = 7(a; +73) is another uniformizer
for L', and so the coefficients for ¢, g+ () will satisfy the minimal divisibility conditions. In
other words,

p* | ge(a;) (1 <i<n) (4.1)

where ¢, denotes the Newton-Ore exponent for the kth coefficient. We need to show that
% | gr(a) for every a € Okr.

Since f was arbitrary, we can choose it so that n > e+ 1 > k4 1. Equation 4.1 can
be used to give the following k£ + 1 equations, written in matrix form:

1 a a? - af Yo Ao
k
1 as a3 - ab " _ A1
L apqr a%+1 T aﬁﬂ Tk Ak
for some Ag, A1,..., Az € Ogr. Then 7 = pC’CV*1X where V' is the Vandermonde matrix for
ai,...,ar+1. The denominator of V=1 will be

det(V) = [ [ (ai — a;)*.

i<j

If p| (a; —aj) (i # j) then a; — a; € pOgr = Pk, contradicting the fact that each a; is
in a distinct coset. Therefore, V! will have no factors of p in its denominator, and hence
p | 7; for each i. It follows that p* | gi(z), completing the proof. O
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4.2. The Second Proof

The second proof is more of a brute force method. The general idea is to use
Waring’s formula to give an equation relating the kth coefficient to the kth power sum
and the previous coefficients. One then proceeds by applying valuations to this equation.
Although the idea is simple in principle, it does require the development of some machinery.

The discussion is divided into 3 parts. The first part deals with some general purpose
results which are applicable across many branches of mathematics. The second part derives
some properties of the Newton-Ore exponents. Finally, the third part proves Theorem 3.5
by combining the results of the first two parts.

4.2.1. General Purpose Results. We start with Waring’s formula. Let f(x)

"+ a2 '+ -+ a,_12 + a, with roots «;, and define the power sums to be s; = > ak

i

Theorem 4.1 (Waring). Let k € {1,2,...,n} and define

k
I = {(]L---;jk) ‘ Zijizk and j; > 0 W}.

i=1
Then

k .
C =1k
S, = E (_1)j2+j4+j6+~- (212‘7 )
fGJk H’i:l (]z')

A proof of Theorem 4.1 can be found in [11]. We will also need the following two
variations of Theorem 4.1.

Theorem 4.2. Let k € {1,2,...,n}. Then

Pl 1)k
sp = (—1)"kay + Z(ﬂ) (ZH ! )

E—1,.
;EJ]; H’i=1 (]Z')
where J; = J;\{(0,...,0,1)}.
Theorem 4.3. Let k > 1 and define

J;;/z{(jl,...,jn) | > iji=k and j; > 0 \ﬁ}.

=1
Then

.
e = 3 (caprrantant i di DU e
Hizl(]i')

Proof. When k < n then j; = 0 for ¢ > k, so this result is the same as Theorem 4.1. So
we may assume k > n. Consider the polynomial g(z) = z*~" f(z). Since g(x) has the same

Zc i
JE€J,,

roots as f(x) but also has 0 as a root with multiplicity k — n, it follows that the power sums
for g and f are identical. Also, the coefficients for g are (ay,...,an,0,...,0). Applying
Theorem 4.1 to g gives the desired equation. O
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The next result we will need is a generalization of the binomial theorem, called the
multinomial theorem. We provide a proof for the convenience of the reader.

Theorem 4.4 (Multinomial Theorem). Let k,n > 1 and define

n
Jmk:{(jl,...,jn) | > ji=k and ji > 0 w}.

i=1

For any x1,...,x, we have

Kl o ,
k n
(x1+zo+-+a,)" = E H?ZI(ji!)xile---w% :

Proof. This is easily proved using the binomial theorem and induction on n. It is trivially
true when n = 1, and when n = 2 it reduces to the binomial theorem. Now let n > 2 and
suppose it is true for n — 1. Using the binomial theorem, we get

(T1+ao+-Faz)f = [(@1+a+ - F 1)tz
"k
= U ) (@1 F g A myg) I
J
(4.2)

Next, by the induction hypothesis,

. E—i )l . . 4

@ tar ot s Y I iy
F€n1n; [Tz (i)
When f: (12 Jn—1) € Jn—1k—j, we get > j; = k, and therefore
k .
> in=0 ZfGJn_l,k_jn = Z;.EJM. Equation 4.2 then becomes
k kN (k— ) 5 ,
(@ ot +z)t = >N ( )ﬂm{le---x#
m0ges, o, I/ i GiY)
k!
_ J1,.J2 In
> [T, GhH ™
EEJn,k =
O

The final results for this section are some identities related to valuations of factorials.

Lemma 4.5. Let p € Z be prime. If i + j = k where i,5 > 0 then

vp(k!) = vp(il) 4+ vp ().
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Proof. We use induction on k. The result is clearly true when k£ = 1. Fix k > 1 and suppose
the theorem is true for k — 1. Let 7,5 > 0 be arbitrary but such that i + j = k. If either ¢
or j is zero then the result is trivial, so we may assume both are non-zero. Without loss of
generality, suppose v,(i) < vp(j). Then

vp(k) > min{vy (i), vp(5)} = vp(i).

Writing (i — 1) + j = k — 1, the induction hypothesis gives

vp((k =1 =1 ((0 = 1)) + 1, (5.

Finally,

vp (k)

I
3

=
+
3

v
S

v
S
_|_
S

Lemma 4.6. Let p € Z be prime. If Y-, j; = k where each j; > 0 then

n
vp(Kl) = > wp (i)
i=1
Proof. This is easily proved by repeated use of Lemma 4.5:

vp(k!) vp(71!) + vp((G2 + -+ + jn)!)

vp(71!) + vp(G2!) + vp((Js + -+ + gn)!)

AVARLY,

IV
"Gt
—
ot

O

The next lemma is an improvement over Lemma 4.6. This lemma is not necessary for
proving Theorem 3.5, but for the sake of completeness we include it. The proof is omitted,
but is not hard.

Lemma 4.7. Let p € Z be prime. If Y, j; = k where each j; > 0 then

k) = D)+ (23(0) — min{o () )
=1
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4.2.2. Properties of the Newton-Ore Exponents. Let L/K be a finite exten-
sion of local fields. Also, we assume L/K is totally ramified with ramification index e. As
usual, we let Og, O denote the rings of integers, and we let Pr, Px denote the unique
maximal ideals.

Throughout this section and the next we will let ¢y, ..., c. denote the Newton-Ore
exponents. In this section we will derive some relationships between the ¢;’s.

Let m be a uniformizer for Op and let p be a uniformizer for Og. Write the minimal
polynomial for 7 as

folz) =2+ a1z N asx® 2 4 - 4 ae92? + e 1T + ae

where each a; € Og. Let d; = vp(a;). Let D denote the exponent of Pr, in D(L/K). As
shown in section 3.3, D = ming<j<c—1{D;} where

Di=edi+e— (k+1)+ev,(e—k).
We are now ready to state our first result.

Lemma 4.8. If Ogrz‘nglg—l{Di} = Dy, then

ck +vple—k) <wyle).

Proof. Since ¢q is defined to be 0, this is clearly true when & = 0. When k # 0, we have
D, < Dy and therefore

edp +e—(k+1)+evy(e—k) <edy+e—1+evye).
= edp+evy(e—k)<k+evye)
= dp+v(e—k)< g +v,(e) < vpyle)
Finally, Definition 3.4 implies that ¢ = dj, completing the proof. O
Lemma 4.9. Let j > 0. Ifv,(e — j) > v,(e) then ogr?gi?,l{Di} # Dj and c¢j = 1.

Proof. From Lemma 4.8 we see that D; cannot be the minimum. Suppose that Dy, is the
minimum. Then Lemma 4.8 gives ¢ + v (e — k) < v,(e) < vy(e — 7). This implies that

ck+ 05k +vp(e — k) —vp(e—7) < 1.
Definition 3.4 then gives ¢; = 1. O

Theorem 4.10. Let i,j € {1,2,...,e} and suppose c;j > 1. Then

ci +v,(1) > ¢ + v,(j) — i<y
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Proof. This is clearly true when ¢ = j, so it suffices to assume i # j. Suppose that Dy is
the minimum (0 < k < e —1). Then Definition 3.4 gives us

cj=ck+ 0>k + V(e —k)—vy(e —7) (4.3)

¢; = max{cy + 0>k + V(e — k) —v (e —i),1} (4.4)

If vy(e) < vp(j) then v,(e — j) > min{v,(e),v,(5)} = v,(e). But then Lemma 4.9 gives
¢j = 1, a contradiction. Therefore, we must have v,(j) < v,(e).
We then have v,(e — j) = min{v,(e),v,(j)} = v,(j), and Equation 4.3 becomes

¢ +vp(d) = ek + 0jsrk +vple — k). (4.5)
Next, if v,(e) # v,(i) then v,(e — i) = min{v,(e),v,(i)} < v,(i). Therefore,

ci+v,(i) > ci+vple—i)

> ¢+ skt Vp(e — k) (By Eqn. 4.4)
= ¢j +1p(J) = Gj>k + disk (By Eqn. 4.5)
> ¢j+vp(J) — dicy-

We have left to consider the case when v,(e) = v,(i). Starting with Equation 4.5 we get

c;+v,(j) = ctvle—k)+6sx
< vye) 4+ 05k (By Lemma 4.8)
= vp(i) + 0>k
< i+ (i)
This completes the proof of the theorem. O

The next corollary follows directly from Theorem 4.10.
Corollary 4.11. Leti,j € {1,2,...,e} and suppose ¢; > 1 and ¢; > 1. Ifi < j then
i+ vp(i) = cj+vp(d) +¢
where € € {0,1}.

4.2.3. Proof of Theorem 3.5. We will use the same setup from the last section.
In particular, we have an extension L/K of local fields, p is a uniformizer for K, and
c1,...,Ce are the Newton-Ore exponents. In addition, we let ey denote the ramification
index for K/Q,.

Theorem 4.12. Let k € {1,2,... e}, let m > 0, and suppose ¢, > 1. Let ji,...,j¢ > 0
such that > ;_,ij; = k+m. Then

vp(k+m)+v, <<ij - 1) !) = v + Y dici > i+ vp(k).
=1 =1 =1
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Proof. Choose ig € {1,2,...,e} so that v,(igji,) is minimum. Then
€
Vp(k +m) = Vp (Z Z]z) > Vp(iojio) = Vp(iO) + Vp(jz'o)-

i=1

Now since c; > 1, Theorem 4.10 gives us
Cip T+ I/p(i()) >c + I/p(k) — 5i0<k-

We will now use Lemma 4.6. Since v,(a) = egvp(a) for any a € Z,,, we can replace p with p
in Lemma 4.6. Using this lemma, we have

Vp <<ij - 1) !> - Z’/p(ji!)

= v, <<2j¢—1>!> — D i) + vp(Gio = DY | =vpli)
i=1 iio
= _Vﬂ(jio)'

Therefore,

(k +m) + Vp ((Z]Z - 1) ) - Zyp(ji!) + Zﬂzcz
=1 i=1
> vk +m) — v,(di +ijcl

> Vp(i0> + ¢y + ]zo - Czo + Z]zcz
i#£ig

> ¢+ Vp(k) + 520<k + .720 - Czo + Z]zcz
1#10

We will be finished if we can show that the term in brackets is non-negative. If j;, > 1 or
if there is more than one non-zero j; then this is obviously true. The only other possibility
is when j;, = 1 and it is the only non-zero j;. But in that case we have (o =k +m > k so
that §;,<r = 0. Therefore, the bracketed term is always non-negative. O

Corollary 4.13. Let 2 < k < e—1 and let j1,...,Jk._1 > 0 such that Z 71 15 = k. If
cr > 1 then

k—1 k—1 k—1
" ((zﬁ _ 1) !) G+ e s e
=1 =1 =1

Proof. Follows easily from Theorem 4.12 by settingm = 0 and jy = jx+1 =---=je=0. O
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Corollary 4.14. Let m € Py, be a uniformizer for L and let ti denote the kth power sum
form. Let k€ {1,2,... e} and let m > 0. If ¢ > 1 then

Voltirm) = e+ (k).

Proof. Write the minimal polynomial for 7 as
fﬂ(l‘) =2+ blllfe_1 4+ 4 be_1x + be.

Since 7 is a uniformizer, the coefficients of f, satisfy v,(b;) > ¢;. From Theorem 4.3 we get

i di =DV +m) 5o,
tk-l-m: Z (il) lnle(ji!) bjl bj2 ”'b?ae

j € Jllc,+ m

where

']I/f,+m:{(j17'--aje) ‘ Zijizk‘+mandj1;20 Vz}.

=1

Finally, from Theorem 4.12 we get

s = ostemron ((S01))

k+m i=1
e
S+ zﬁc@}
=1 =1

> ¢+ I/p(k).

We now have everything we need to prove Theorem 3.5.

Theorem 3.5. Let L/K be a totally ramified extension of local fields. Then any o € Pr,
satisfies the Newton-Ore exponent condition.

Proof. Let m € Pr, be any uniformizer for L and let ¢, = > 7, ﬂf be the kth power sum for
. Write the minimal polynomial for 7 as

fr(x) =2+ bia® '+ 4 be_qx + be

and note that v,(b;) > ¢;, where the ¢;’s are the Newton-Ore exponents.
Write the characteristic polynomial for « as

Co(x) = 2°+ a1z o+ aeq T + ae.

We need to show that v,(a;) > ¢;.
Since Of, = Og|[n], a will take the form

a=dm+dor® + - +d.®
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where each d; € Ok. If p {d; then a is another uniformizer, and hence v,(a;) > ¢;. So we
may assume that p | di. Since p = en® for some € € OF, o can be put into the form

a=dom® 4+ depmtL

Let s, => 5y aF be the kth power sum for . The first thing we will show is that
Vp(sk) > cp + vy(k) whenever ¢, > 1. Start with Theorem 4.4 where we take n = e and

z; = digm
ab = Z 1—[ G d27T )t (d3m®)2 - (degrm©t e
1 (A
]ejek =
_ Z d/ 2j1+3j2++(e+1)je
]eJek H’L 1 ]1

where d' € Ok and

Je,k:{(jlv"'aje) ‘ Z]Z:ka’ndjzzo VZ}

i=1
It follows that

k!
Sp = Z Wd,t2j1+3j2+'“+(e+1)je

Define m = 3 _;_, ij; and note that for ; € Je i we get
251+ 3j2+--+(e+1)je =k +m.

Therefore, if ¢ > 1 then

vo(sy) > min {yp(k;!)—Zyp(ji!)+yp(tk+m)}

]eJe,k i=1
> ¢ +vpk) (4.6)

where we have used Lemma 4.6 and Corollary 4.14. (Note that Lemma 4.6 is still valid
when we replace p with p.)
Next, we use Theorem 4.2 to write aj in terms of s; and aq,...,ar_1:

k-1 .
_ 1>
(—1)Ftqy, = + >+ <ZZ L al'al? -
‘]GJ/ HZ 1(] ‘)

coalh) (4.7)
where

i=1

k—1
J,g:{(jl,...,jkl) | > iji=kand j; >0 w}.
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We will use induction on k to show that v,(a;) > c,. Because a € Pr, it follows that
vy(a;) > 1 for every i, so when considering ay, it suffices to assume ¢, > 1. When k =1,
a1 = s1 and we have v,(a1) = v,(s1) > ¢1. Now let & > 1 and suppose v,(a;) > ¢; for
1 <i<k—1. From Equation 4.7 we have

k—1
. S . .
vp(ag) > min (Vp (f) ,]{relbrll {Vp (( E Ji — 1) !>

k—1 k—1
e +zm})
=1 =1
>

where we have used Equation 4.6 and Corollary 4.13. This completes the proof. ]



CHAPTER 5

THE ALGORITHM

In previous chapters, we have discussed how to get Archimedean bounds on the
polynomial coefficients and how to compute a complete set of congruences that the coeffi-
cients must satisfy. This chapter will discuss how these concepts are utilized to form the
algorithm.

In this chapter, we assume we are given a degree m number field K, and also a finite
set of integral primes S. We are interested in finding all degree n extension fields L/K
which are unramified outside of S.

5.1. Representatives for the Residue Field

In Chapter 3 it was assumed that we had a complete set of representatives for
Ox /p, which we denoted T'. It is worth mentioning how such a set can be constructed. The
following theorem provides an answer. For a proof, see proposition 2.4.6 and Corollary 2.4.7
in [3].

Theorem 5.1. Let [K : Q] = m and let wy,...,wn be an integral basis for K. Let p be a
prime ideal of O with (O /p : Z/pZ] = f, and let A = [a;j]i; be its Hermite normal form.
Let D), be the set of indices i € [1,m] such that a;; = p. Then

1. |Dy| = f, and
2. w; € Ok /p fori € D, are Fy-linearly independent.

So if we let
{wi,wy, .. Wi} = {wi | i € Dy}

then we can take
f
r—{szwg | Ogbigp—l} (5.1)
i=1

as our complete set of representatives for O /p.
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5.2. Discriminant Calculations

Before Martinet’s bound can be calculated, it is first necessary to compute the
absolute discriminant |dy|. The value of |dy| is determined from di and the ramification
structure which is being targeted.

Let Sk be the set of prime ideals of Ox which lie above any prime in S. Fix a prime
ideal p € Sk and let p be the prime below p. Suppose we are targeting the ramification
structure pOr = P - - eg with residue degrees f; = [Op/%; : O /p].

We are interested in determining that portion of |dy| which can be attributed to p.
We will start by computing the different D(L/K). From Dedekind’s theorem, we know that
Bi is ramified in O, if and only if B, divides D(L/K). Therefore, D(L/K) has the form:

D(L/K) = (H qu) : (5.2)

where a is an ideal relatively prime to each B;, and each r; > 0. Note that r; > e; — 1 with
equality if and only if B; is tamely ramified or unramified. In particular, r; = 0 if and only
if B; is unramified.

The relative discriminant ideal is

0k = Nik(D(L/K))

= (HNL/K > Nik(a)
= (prm> "Nk (a)

i=1
PfNL/K(a)
where s = Y9 | f;r;. The absolute discriminant is then given by
el = |dx "IN o (00/K)

= |dg|"Ngo(p*)NL/o(a))
= |dx|"p™° N g(a)

where fo = [Ok /p : Z/pZ). Note that the term N7 g(a) might have additional factors of p,
but all these factors can be attributed to a prime ideal different from p. The factor of p in
|dr| which corresponds solely to p is p/0%, and we denote this factor drp:

dL dEf fO Zz 1rzfz (53)

It is now easy to compute |dy| for a specific targeted search. Suppose we are inter-
ested in fields ramified at p1,...,px. Then |d| is given by

k
il = lde|" [ [ dr.p,
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where each d, p, will depend on the targeted ramification structure for p;. Note that to
obtain all field extensions L/ K, we must search over all possible combinations of ramification
structures.

Example 5.1. Suppose we are interested in decics containing a quadratic subfield. Then
we have [L : K] =5 and [K : Q] = 2. Let us further suppose that S = {5}. There is only
one possibility for K, namely K = Q(v/5). We have 50k = p?, s0 eg = 2 and fo = 1.

First consider the ramification structure pOr, = B°. The local form will be a quintic
extension L/ Ky. We let d denote the exponent of B in D(L/K), which is the same as the
exponent of Pry, in D(Ly/Kyp). As shown in section 3.3.5, d can take 1 of 9 values (see
Table 3.6). For this ramification structure we have

dL’p - 5d,
and since p is the only prime ideal, we have

\dr| = |dg|Pdp,, = 5577

Now consider the ramification structure pOy = PIP2.  This time ramification is

tame and we have e1 = 3, eo = 2, and f1 = fo = 1. Therefore,
de — 5(61*1)f1+(€2*1)f2 — 537
and hence |dp| = |dk|?dp,y = 5°.

Now consider the ramification structure pOr = PB2Po where fi = 2 and fo = 1.
Since ramification is tame, we get

drp = slea—Dft — 52,

and hence |dy| = |dg|*dp, = 5".
The other ramification structures are handled in a similar way.

5.3. Implementing the Bounds

Let 01,...,0, be the embeddings of K and let wy,...,w, be an integral basis for
K. All of the archimedean bounds derived in Chapter 2 take the form

a'QlQi < B (5.4)

where Q = [0;(wj)]ij, B is a positive real-valued bound, and @ is either a polynomial
coefficient or a power sum. The vector @ = [ay...a,,] € Z™ represents the element a =
D i aiw;.

The first issue we consider is how to convert the bound given by Equation 5.4 into
separate bounds on each component a;. Let Q' = QUQ. Since @ has real valued components,
a'Q'd is also real valued, and therefore

a'Q'da =Re{d'Q'a} = at Aa
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where A = [Re{g;;}];;. Equation 5.4 then becomes
atAi<B (5.5)

Since ZTAZ > 0 for every non-zero 7 € R™, A is a positive definite symmetric real matrix,
hence must have real positive eigenvalues. The eigenvector/eigenvalue decomposition of the
matrix A is given by

A=EAE"

where E is the matrix whose columns are the eigenvectors of A and A = diag(A1,...,A\n)
is the diagonal matrix of eigenvalues.

The cross product terms in Equation 5.5 are removed by considering the transfor-
mation Z = ETd. This gives

7TAz7=a EAETYG = aY Ad < B.

— Mzl 4 Nzs -4 A2, < B. (5.6)

Since each A; > 0, this region is the interior of an m-dimensional ellipsoid. It follows that
a lies inside a rotated m-dimensional ellipsoid. For this reason, we will sometimes refer to
bounds of the type given in Equation 5.5 as ellipsoidal bounds.

It is easy to use Equation 5.6 to get bounds on the z;’s, but this does not help to
get bounds on the a;’s. To get good bounds on the a;’s, we start by forming a triangular
decomposition for the matrix A. This is sometimes called the Cholesky decomposition. The
existence of such a decomposition is provided by the following theorem, whose proof can be
found in [6] (p. 114, 407).

Theorem 5.2. A matriz A is positive definite if and only if there exists a mon-singular
upper triangular matriz T with positive diagonal entries such that A = TTT. If A is real
then T s real. Furthermore, this triangular decomposition is unique.

So we may decompose A uniquely as
A=T'T

where T is an upper triangular matrix with positive diagonal entries. Defining z' = T'd we

have
21 tin tiz - tim aq
z2 | 0 tog -+ tom ag
Zm O 0 tmm am

which implies
7=a'T'Ta < B. (5.7)



Substituting for z; in Equation 5.7 we get

(Z tliaz’> + (Z t2iai> + -+ (tmmam)? < B.
i=1 i=2
This gives the following bound on a,:
1
‘am| S T \/§7
tmm
Given the value for a,,, we then derive the following bound on a,,_1:

|tm—1,m—1am—1 + tm—l,mam’ S \V B — (tmmam)2 déf Bm—l-

—By—1 — tmfl,mam By — tmfl,mam

- S Am—1 S
tmfl,mfl tmfl,mfl

And in general, the bounds on a; are computed from the current values of a;,1, ...

follows:
1
o Z tigar | <a; < f Z tikay
13 k=j+1 k=j+1

where we define

B; ¥ Z <Z t,maZ) 2.

k=j+1
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(5.8)

(5.9)

(5.10)

, Ay AS

(5.11)

(5.12)

We end this section with an explicit formula for the Cholesky decomposition. These

formulas are derived by forming the product TTT and equating it to A =

a a a
ti1 = /a1, tip= P2 tig =32, oo, =7k

11’ 1’ t11

_ — 12 __ az2z—tiati3 . _ agk—tiatyg
tog = /G232 — 11y,  l2g = 2254, o lok = T :
_ 2 2 _ as—tisti—tast
t33 = \/agz — ti3 — ti3, by = BEHIIERE (> 3)

tas = /aas — ] — 15, — 3, tyy = Gb—tuahie—toab—loalae (> 4)

taa

And in general,

aj—0" 1 bty .
b = A==k Zg; (k> ).

As an example, when m = 2 the above equations give

Vai o
T= a2\ 1/2
_ 12
0 (a22 —)

(5.13)
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5.4. Implementing the Congruences

In the previous section, we showed how to obtain bounds on the individual compo-
nents of a coefficient @ given a bound on @TQ"Qa. This method can be used directly when
performing a standard Martinet search, but must be modified slightly in order to use the
congruences on da.

Suppose we want to find elements a = > a;w; € O which are congruent to
c=>", ¢w; € Og modulo the ideal a. The ideal a is a free Z-module of rank m = [K : Q],
so there exist j; € Ok such that

a =L+ pei+ -+ pm.

Each p; may be written pj = > " | pi;jw; where p;; € Z. Now if a = ¢ (mod a) thena—c € a
which implies

m m
Zaiwi - ZCiWi = kipr+ -+ knpim
i=1 i=1

m m
= klZMilwi + - +kmz,uimwi
i=1 i=1

for some k; € Z. Equating the coefficients of the w;’s, we get the following matrix equation:

ai M1l M12 ccc Him k1 c1
a Mol M22  ccc H2m ko 2
Qm Hml Hm2 *°° Hmm km Cm
which we write as
a=Mk+c

Note that there exists a basis for a such that M will be in Hermite normal form. We will
always assume that M is the Hermite normal form.
Now define k' = k + M~'Z Then

= M(k+M'd) = MK,
We now use the bound on @ to give bounds on the k;’s. From Equation 5.4 we get
(K) T (@QM)T(QM)K' < B.

As in section 5.3, there exists an auxiliary matrix A such that (E’ )TAE’ < Band Ais a
positive definite real symmetric matrix. Using the Cholesky decomposition for A as was
done in section 5.3, we obtain the following bounds for the components of &’.

1
k| < — VB
tmm



o7

/

m

Bm—l - tm—l,mkq/n

tm—l,m—l tm—l,m—l

1 m 1 m

/ / /
B > tiiki | <kj< |\ B > ik
17 i=j+1 7 i=j+1

where

. . 2
BY . |B- Y (Z t,ik;;) :
r=j+1 \i=r
If we write these bounds as L} < k} < U/, then we get the following bounds on the
k‘i’S
[Li —ci] < ki < U] — ¢

where ¢/ = M~ We will write these bounds as L; < k; < U;. Note that the bounds
L; and U; depend on the current values of k;41,...,kny. So to obtain all values for E, we
first loop over the range for k,,. The current value for k,, is used to get looping bounds for
kym—1. Then the current values for k,, and k,,_1 are used to get looping bounds for &k, o,
and so on.

The search algorithm works by looping over all combinations of the k;’s, and for each
combination, computing @ = M k + & Observe that the bounds on the k;’s are smaller than
the bounds on the a;’s so that the search region has been reduced. What is happening here
is easily understood by considering the one dimensional case, where we want all elements
a such that a = ¢ + kp (here p; = p is the modulus of the congruence vector). If the
archimedean bounds are |a| < B then k = “>¢ so that % <k< %. We see that the
search region has been reduced by a factor of p, and as k loops over all integer values, a
will loop over the multiples of p. The multi-dimensional case is completely analogous.

The above method must be modified slightly when the bound is on a power sum
instead of a polynomial coefficient. Suppose we are interested in the jth (2 < j <n —1)
polynomial coefficient and we have the following bound on the jth power sum:

T ~H A —
Sj Q QSJ' § B.
From Newton’s formulas, we may write
jaj = bj — sj

where b;- € Z™ depends on the coefficients a1, ...,a;_1. As usual, b; is the vector represen-
tation for an element b; € Og. The first 3 values for b; are

2
b2 == a17

b3 = —CL:{’ + 3&1&2,
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and

by = af + 4araz — 4aay + 243

For this to work properly, we must assume that the looping order on the coefficients is
ai, 0y, 02,03, ...,d,—1. The reason a, comes second is that it is needed in order to use the
method of Pohst which gives the bounds on the power sums.

The coefficient aj is still related to the congruence via the equation

This time we define

and

With these definitions, we may now write

We now use the bound on sj to give bounds on the components of K
si1Q1Qs; = (K T(QM)M QMK

— (E’)T(QM)H(QM)E’Z;QSZ-T HQs, <

.

As in section 5.3, there exists an auxiliary matrix A such that (E’ )TAE' < B and Ais a
positive definite real symmetric matrix.

The rest of the algorithm is basically the same as before. The only difference is we
use j% for the bound, and &} = ¢ — k;.

5.5. Algorithm Summary

We now have everything we need to construct the algorithm. First we discuss the
targeted Martinet search algorithm, and then we discuss the general algorithm for finding
all extensions L/K which are unramified outside of S.
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5.5.1. The Targeted Martinet Search. The input to the targeted Martinet

search will be a vector of congruence data:

U=[dpmm,Ci,...,CN]

where m is the modulus ideal for the congruences, dy,  is the portion of |dy| which can be

attributed to the primes dividing m, IV is the number of congruence vectors, and each ¢; is

a vector of congruences. Note that each ¢; is of length n = [L : K] where the jth component

is the congruence for the jth coefficient. The algorithm is as follows:

1.

If M is the Hermite normal form for m, then compute the ¢;;’s corresponding to
Q' = (QM)"(QM) according to Equation 5.13. Note this will first require computing

the auxiliary matrix A = [Re{qgj}}
ij

. Compute |d| = |dg|" - dfm.
. Loop over congruence vectors ¢ = [¢i1,. .., Cin].

. Set a1 = ¢;1. Here it is assumed that the congruence vectors are constructed in such

a way that the first congruence gives the first coefficient directly.

. Compute Martinet’s bound:

Cu, =

SHE

m 1/m(n—1)
2 |di| )
oila + Yn(n— .
;:1\ 3(a0)|” + Ymn-1) (nm\dK]

. Loop over the coefficient a, where the bounds on a, are computed according to

Theorem 2.2, and the looping structure for the components of a, is described in
Section 5.4 above.

Use the method of Pohst (Theorem 2.7) to give bounds on s3, S4, ..., Sp—1.

. Loop over the rest of the coefficients in the order as, ag, ..., a,_1 as described in

Section 5.4 above. For each combination of coefficients, do the following:

(a) Form the polynomial
far (@) =2" + a1+ + ap 17+ ap.

(b) Compute the polynomial fr(x) € Z[z] representing the field L = K(«). In the
pari/gp system, this can be done by using the function “rnfequation()”.

(¢) Only continue if deg(fr) = nm. This is always true when n is prime, in which
case this step can be skipped.

(d) Compute the polynomial discriminant for f7, and divide out all factors of p € S.
Only continue if the result is a non-zero square.
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(e) Only continue if fr, is irreducible.

(f) Finally, write f7, to file if the field discriminant of f7, divides |dp|.

One may also incorporate the constraints of Section 2.4 by testing each coefficient
inside of its respective looping structure.

5.5.2. Algorithm for Constructing Field Tables. The algorithm for finding all
primitive degree n extensions L/K which are unramified outside of the set S is as follows.

1. Compute the set Sk of all prime ideals of O which lie above some p € S.

2. For each p € Sk, compute the complete set of congruence vector data C} according
to the theorems of Chapter 3. This will entail computing I'" for each p according to
Equation 5.1. The elements of C} are vectors of the form

17: [dL,p7pk7 C_ia o 707\7]

where p¥ is the modulus ideal for the congruences, dr,p is the portion of |dr| which
can be attributed to p, IV is the number of congruence vectors, and each ¢; is a vector
of congruences.

3. Perform a standard Martinet search to find all primitive extensions L such that L/K
is unramified.

4. For each p € Sk, do a targeted Martinet search as described in Section 5.5.1 to find
all primitive extensions L/K which are ramified at only p.

5. When |Sk| > 2, for each pair of primes p,q € Sk, do a targeted search to find all
primitive extensions L/K which are ramified at precisely p and q. Before the search
can be performed, the congruence data for p and q must be combined. The combined
discriminant bound is dy, pq = dp, pdr, q and is that part of dy, which can be attributed to
both p and q. The combined modulus ideal is the product of the individual modulus
ideals. Finally, the individual congruence vectors are combined in pairs using the
Chinese remainder theorem for ideals. Note that a combined congruence vector can
be discarded if the first congruence is not congruent to one of the allowed values for
aq as dictated by Theorem 2.1.

6. When |Sk| > 3, for each triplet p;, p;, px € Sk, do a targeted search to find all primi-
tive extensions L /K which are ramified at precisely p;, p;, and pi. The congruences
are combined in a similar way to that described in step 5.

7. When |Sk| > 4, do a similar thing for all combinations of 4 prime ideals.

8. Continue in this manner until a targeted search has been performed to find all prim-
itive extensions L/K which are ramified at precisely every prime ideal of Sk.
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9. Refine the final list of polynomials to remove isomorphic fields.

To construct complete tables of imprimitive number fields of degree N which are
unramified outside of the set .S, the above algorithm is applied to every field K of degree
m dividing N (1 < m < N), where K is also unramified outside of S. In this way, tables
are built up inductively from tables of smaller degree fields.
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CHAPTER 6

APPLICATIONS

The targeted Martinet search algorithm has multiple applications, which are now
discussed.

6.1. The Calegari Conjecture

The following question was posted on a number theory e-mailing list by Frank Cale-
gari:

“I'm trying to show that there is no A5 extension K of Q(¢) with the following
property:
1. K/Q(i) is unramified outside (1 +14), (24 4), and (2 — i);
2. The discriminant of K/Q(¢) divides the following number:
(1 4 i)48(2 + 1)69(2 _ i)117.
Is this a plausible computation?”

The first step is to recast this question into a form more amenable to the targeted
Martinet search algorithm.

Let K = Q(i) and let L be a degree n = 5 extension of K. Note that 20y = p?
where p; = (1 +1)Og, and 50k = paps where py = (2+ )0k and p3 = (2 —i)Ok. Using
our notation we have

S = {2’5} and SK = {p17p27p3}'

So Calegari’s question is referring to quintic extensions of K which are unramified outside
of S and which have Galois group As over K.

Next, we will consider Calegari’s discriminant condition. Calegari’s discriminant
bound applies to the Galois closure LY of L/Q, and can be stated as follows

0r9/k = Py P57 p3°

where ny < 48, ny < 69, and n3 < 117. Next, we will compute |drs|. Observing that
[LI : K] = |A5| = 60 we get

ldro| = |dx [N gL i) = 4902M 525" = 120+ mpnatns,
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Now suppose |dr,| = 2™15™2. We wish to determine bounds on m; and ms. Since
[L9: L) =[LY: K]|/[L:K]=060/5=12, we get

ldps| = |do|" Ny jg@ras1),

and therefore
2120+n1 5n2+n3 _ 212m1 512m2NL/Q(DL9/L)7

which implies
12mq <1204+ n1 <168 and 12m9 < ng + ng < 186.

Hence my < 14 and mo < 15. So for Calegari’s question to be true, it suffices to prove the
following conjecture, which we will refer to as Calegari’s Conjecture.

Conjecture 6.1. There is no quintic extension L of Q(i) satisfying
1. Gal(L9/Q(3)) = 45,
2. L is unramified outside of S ={2,5}, and
3. dy, divides 2515,

Let G = Gal(L9/Q). Since 120 divides |G| and L contains a quadratic subfield, one
sees that
G € {T11,T12,T22,T40,T41,T42, T43} (6.1)

where we use the naming convention for the transitive groups as established in [1]. Analyzing
each group in Equation 6.1 separately, it’s not too hard to show the following:

Theorem 6.2. Let K be a quadratic number field and let L be a quintic extension of K
such that Gal(LI/K) = As. Then

G € {T11,T12,T40}.

We now have everything we need to apply the targeted Martinet search. Doing a
complete search for the case when K = Q(i) and S = {2,5} turns out to be impractical.
However, it is possible to do a search for all fields having vo(dy) < 2!7 (the maximum
possible is 22%) within a timely manner, and this is sufficient to cover Calegari’s discriminant
condition. After about a week of non-stop processing, the search yielded 104 non-isomorphic
fields of which there were none of type T11, 1 of type T12, and 1 of type T40. The T12
and T40 polynomials are:

frio = 2% — 1027 4 452° — 462° + 502t — 1202° 4 10022 + 40z + 8,

frao = 2'% — 227 4+ 52® — 1227 4 1225 — 202° + 282* + 2023 + 5322 + 42z + 9.

The T12 had discriminant 2'25'6 and the T40 had discriminant 22258, both of which exceed
Calegari’s bound. This proves the truth of Calegari’s Conjecture.
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6.2. Verification of Old Tables

In [7], Jones and Roberts determine all sextic fields unramified outside the set S =
{2,3}. They used a targeted Hunter search which is only guaranteed to find the primitive
sextics, and then they used class field theory to show that the list of discovered fields actually
contained every sextic. On his web site [9], John Jones has additional tables of sextics with
prescribed ramification; however, these tables were never proven complete. Performing
targeted Martinet searches for all cases on this web site, it was proven that the tables are
indeed complete.

6.3. Comnstruction of New Tables

The most obvious application of the targeted Martinet search is to construct com-
plete tables of imprimitive number fields. This was done for quartics, sextics, octics, nonics,
and decics. Results for all cases except quartics are tabulated in Appendix A, and can also
be found at either [9] or [10].

The biggest concern when using complex algorithms such as the targeted Martinet
search, is the possibility of subtle programming errors, which may lead to erroneous results.
In our case, a mistake usually leads to a missed field, and hence incomplete number field
tables. In this section we discuss a method for checking the completeness of the tables.

Fix the set of primes S and let G = zT'y represent a Galois group of type Ty for a
field of degree . Then we let Ng be the number of fields with Galois group G which are
unramified outside of S. In addition, we let N¢,, N¢,, and Ng, be the number of quadratic,
C3 cubics, and S3 cubics respectively.

The method for checking our field data involves analyzing each type of Galois group
in order to count the number of expected fields of a given type as a function of the numbers
of smaller degree fields. As an example, looking at the subgroup lattice for a Cg = 671
sextic, we see that the Cg sextic is the compositum of a quadratic with a C3 cubic. Hence,

NﬁTl = NCzNC3'

The method gives a series of tests which can be applied to the data in the tables to
see if the numbers of certain types of fields are correct. It is important to note that the
set of tests is not guaranteed to find all possible flaws in the data, but does allow us to say
with a high degree of confidence that the data is complete.

We now list the various tests as a sequence of theorems, one theorem per degree.
The proofs are omitted, but are not difficult.

Theorem 6.3 (Sextics).

Ner1 = Ny, Ne, Nere = NaraNe,

Ner2 = Ng, Ner7r = Nurs

Ner3 = Ns;(Ne, — 1) Ners = Nurs

Nera = NuTs Ner11 = Nars(Ne, — 1)

Ners = Nc; N,
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Theorem 6.4 (Octics).

Nsra = Nyr1(Ne, — 1) Ngro3 =0  (mod 2)
Nsrs = 55 Narao(Ne, — 3) Ngras = Nars(Ne, — 1)

Nsra = 2 Nars Ngrog =0 (mod 4)
Nsr¢ =0 (mod 2) Ngroy =0 (mod 2)
Nsrg = L Nyr3(Ne, — 3) Ngr28 = Nsraor
Ngrio=0 (mod 2) Ngrag = 3Ngr31
Ngr11 =0  (mod 3) Ngr30 =0 (mod 4)
Ngr13 = NuraNe, Ngr31 =0 (mod 2)
Ngria = Nurs Ngr3zz =0 (mod 3)
Ngri5 =0 (mod 2) Ngrss =0 (mod 2)
Ngr16 =0 (mod 2) Ngr3s =0 (mod 8)
Ngr17 =0 (mod 2) Ngrsg =0 (mod 2)
Ngr1s =0 (mod 8) Ngrsg =0 (mod 6)
Ngr19 = 2Ngr20 Ngrgo =0 (mod 2)
Ngr20 = Ngr21 Ngrs1 =0 (mod 2)
Ngroo =0 (mod 6) Ngrgs =0 (mod 4)
Theorem 6.5 (Nonics).
Nor2 = 55 Ney(Ney — 1) Nor17 =0 (mod 3)
Nor4 = NgyNg, Norig =0 (mod 2)
Nors = £[3Ng,(Ng, —1) — Ngrg] ~ Noroo =0 (mod 3)
Nor7 =0 (mod 4) Nor21 =0 (mod 3)
Nors = Ner9 Nor22 =0 (mod 3)
Nor11 = Nor13 Ngros =0 (mod 3)
Nori2 =0 (mod 4)
Theorem 6.6 (Decics).
Nior1 = Ney N5t Nior17 =0 (mod 2)
Nior2 = Ns72 Nior1is =0 (mod 3)
Nior3 = Nsr2(Ng, — 1) Nior20 =0 (mod 3)
Niora = Nsr3 Nior21 = 2N10119
Niors = Nsr3(Ne, — 1) Nior22 = Ns75(Ne, — 1)
Niore = 2N571N512 Niore3 =0 (mod 6)
Nigrs =0 (mod 3) Nior2z3 >0 == Nior15 > 3
Niorg = 2N572(Nsr2 — 1) Nior24 = Nioras
N10T10 =0 (mod 2) N10T27 =0 (mod 3)
Nior11 = Ny, N7y Nior29 =0 (mod 2)
Nior12 = Nsrs Nior29 >0 = Nior24 >0
Nior14 =0 (mod 3) Niors7 = Niorss
Nior1i5 =0 (mod 3) Nior3o =0 (mod 2)

Nior16 = Nior1s Nior39 >0 == Nior3r >0



1]

[10]

REFERENCES

Gregory Butler and John McKay, The transitive groups of degree up to 11, Comm.
Algebra 11 (1983), 863-911.

Henri Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag,
New York, 1996.

Henri Cohen, Advanced Topics in Computational Number Theory, Springer-Verlag,
New York, 2000.

F. Diaz Y Diaz and M. Olivier, Imprimitive ninth-degree number fields with small
discriminants, Math. Comp. 64 (1995), 305-321.

C. Hermite, Sur le nombre limité d’irrationalités auxquelle se réduisent les racines
des équations a coefficients entiers complexes d’un degré et d’un discriminant donnés
(Extrait d’une lettre & M. Borchardt), J. Reine Angew. Math. 53, (1857), 182-192 =
Oecuvres, I, Paris 1905 414-428.

Roger A. Horn and Charles R. Johnson, Matrix Analysis, Cambridge University Press,
Cambridge, 1985.

J. Jones and D. Roberts, Sextic number fields with discriminant (—1)72%3%, in Num-
ber Theory: Fifth Conference of the Canadian Number Theory Association, CRM
Proceedings and Lecture Notes, 19, American Math. Soc., (1999), 141-172.

J. Jones and D. Roberts, Septic number fields with discriminant +223%, Math. Comp.
72 (2003), 1975-1985.

J. Jones, Tables of number fields with prescribed ramification,
http://math.la.asu.edu/"jj/numberfields

E. Driver, Tables of number fields with prescribed ramification,
http://mathpost.la.asu.edu/ driver/



68

[11] P. A. MacMahon, Combinatory analysis, Chelsea Publishing Co., New York, 1960.

[12] J. Martinet, Méthodes géométriques dans la recherche des petits discriminants, Prog.
Math. 59, Birkh&user, Boston (1985), 147-179.

[13] O. Ore, Newtonsche Polygone in der Theorie der algebraischen Korper, Math. Ann. 99
(1928), 84-117.

[14] M. Pohst, On the computation of number fields of small discriminants including the
minimum discriminants of sixth degree fields, J. Number Theory 14 (1982), 99-117.



APPENDIX A

Tables of Fields with Prescribed Ramification

In this appendix, we provide complete tables of number fields unramified outside of
a finite set of primes S. The tables give the numbers of each type of field and the total
number of fields. There are tables for degrees 6, 8, 9 and 10. This information can also be
found on the web, along with links to the data files [10].

A.1. Imprimitive Sextic Tables

In the following tables we use the naming convention of Butler and McKay [1]. In
particular, we have

T5:C§>4C'2 T10:C32>404
T6:A4XCQ T11=S4><02
T9:C32>4022 T13=C§>4D4.

TABLE A.1: Imprimitive sextics where S contains 1 prime.

S T13 T11 T10 Tg S4_ SZ_ TG T5 A4 D6 53 CG Total
{2} 0
{3} 1 11] 3
{5} 0
{7} 1| 1
{11} 0
{13} 1|1
{17} 0
{19} 1| 1
{23} 1 1
{29} 0
{31} 1 1 3
{37} 1
{41} 0
{43} 1| 1
{47} 0

continued on next page
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TABLE A.1l: Imprimitive sextics with [S| =1 (cont.)

T3

T

Tho

Ty

Sy

S

Ts

Ts

Ay

Dg

S3

Cs

Total

{53}
{59}
{61}
{67}
{71}
{73}
{79}
{83}
{89}
{97}
{101}
{103}
107}
{109}
{113}
{127}
{131}
{137}
{139}
{149}
{151}
{157}
{163}
167}
(173}
(179}
{181}
{191}
{193}
{197}
{199}
{211}
{223}
{227}
{229}

[an)
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TABLE A.2: Imprimitive sextics where S contains 2 primes.

S T13 T11 T10 Tg S; Sj T6 T5 A4 DG Sg 06 Total
{2,3} o0 | 132 4 | 22|22 | 22| 7 | 8 1 (48| 8 | 7 331
{2,5} 18 3] 3 6 | 1 31
{3,5} 2 |2 4] 11 5 10(5] 3] 33
{27} | 2 2 7 1 7| 19
(37} | 2 | 2 411 |1 20 105 ]12] 57
(5,7} 1 2 13| 7
{211} | 2 | 36 1166 12 | 2 65
{311} | 2 | 6 93| 3 6 1216 | 3| 50
{511} | 2 2
{711} 3| 3
{2,13} 60 1110110 7| 2 1 (12| 2 | 7 112
313V | 4 | 2 | 4 16| 1| 1 32 16 | 8 | 12| 96
{5,13} 3 3 7
{7,13} 3 12| 16
{11,13} 2 1 1 1 2 1 3 11
{217} | 12 12
{3,17} 4 2 4 2 2 3|5 1 1101 5 3 41
{517} 0
{717} 1 2 |1 |3 7
{11,17} 2 1] 1|1 4 |2 11
{13,17} 2 31 5
{2,19} 78 311311373 181 3| 7 146
{319} | 2 | 4 412 21]3]20 105 ]12] 65
{5,19} 31 3
{7,19} 3| 4 2 1] 12 23
{11,19} 3 3 7
{13,19} 2 1 1 4 2 1] 12 23
{17,19} 3| 3
{223} | 4 | 54 319109 18 | 3 100
{3,23} 8 6 91 3 3 6 12 | 6 | 3 o6
{5,23} 2 1|1 2 |1 7
{7,23} 2 1|1 1 2 11| 3]| 11
{11,23} 2 1|1 2 |1 7
{13,23} 2 1 2 1 1]3] 9
{17,23} 2 1 1 2 1 7
{19,23} 2 1 1 1 2 1 3 11
{2,290} | 2 |102 3017 | 17 18 | 3 162

continued on next page
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TABLE A.2: Imprimitive sextics with |S| = 2 (cont.)

S T13 T11 T10 Tg S; Szr T6 T5 A4 D6 Sg 06 Total
{3,29} 8 [ 2944 6 1216 3] 54
{529} | 2 4 6
{7,29} 2 3 1 31 9
{11,29} 2 1|1 2 |1 7
{1329} | 8 3] 11
{17,29} 2 2
{19,29} 2 1 1 1 2 1 3 11
{23,209} | 2 2 |1 5
{231} | 2 | 18 3133|156 |1|7] 81
{3,31} 2 4 9 2 2 24 12 1 6 | 12 73
{5,31} 2 1 2 13| 9
{7,31} 4 2 | 1|12 19
{11,31} 4 1] 2] 2 2 4123 2
{13,31} 2 1 1 3| 4 1 2 1] 12 27
{17,31} 4 1| 2] 2 2 4123 2
{19,31} 30412 ]1]12]| 23
{23,31} 2 1 3| 2 1 4 2 3 20
{29,31} 2 3|1 1 2 1 3 15
{2,37} 4 60 2 1 (1010 | 7 | 2 1 (12| 2 | 7 118
{3,37} | 28 2 2 |16 1 1 3132 1|16 | 8 | 12| 122
{5,37} 3| 3
{737} 2 4 2 |1 |12] 21
{11,37} | 2 2 3|1 1 2 1 3 15
{13,37} 12| 12
{17,37} 2 3 5
{19,37} 6 2 12 | 20
{23,37} 2 113|112 |1]3] 15
{29,37} 4 3 1 30 11
{31,37} 8 1 4 4 6 | 8| 2 4 2 |12 o1
{241} | 8 2 10
{3,41} 102 4|55 5 105 | 3| 49
{541} | 4 4
{741} 3112 1]3]| 11
{11,41} 6 1|3 3 4| 2 19
{13,41} 2 1 1 1 2 1 3 11
{17,41} 8 1] 4| 4 4 | 2 23
{19,41} 6 3 3 1 2 1 3 19

continued on next page




TABLE A.2: Imprimitive sextics with |S| = 2 (cont.)

S T13 T11 T10 Tg S; Szr T6 T5 A4 D6 Sg 06 Total
{2341} | 2 2 |1 5
{29,41} 2 1|1 2 |1 7
{31,41} 1 2 13| 7
{3741} | 4 2 3] 9
{243} | 2 | 36 1016|6325 |12]2| 7] 114
{3,43} 2 6 4 3 3 20 10 | 5 | 12 65
{5,43} 2 1|1 1 2 1] 3| 11
(7,43} 304 2 | 1|12 23
{1143} | 2 | 6 313 |3]1 2 1|3 25
{13,43} | 2 2 1 1 4 2 1 |12 25
{1743} 6 313 1 2 |1 [3] 19
{19,43} 4 2 |1 ]12]| 19
{23,43} 2 1|1 1 2 1] 3] 11
{29,43} 1 2 11 ]3]| 7
{31,43} 2 1 1 1 3| 8 4 2 |12 35
{37,43} 3 12| 16
{41,43} | 2 2 1 1 3|1 2 1 3 17
{2473 | 6 |36 | 2 | 1|6 | 6 12 | 2 71
{3,47} 8 10 9 5 ) 6 12 |1 6 | 3 64
{547} 6 1| 3 | 3 4|2 19
{747} | 2 | 2 1|1 |1 2 4123 18
{11,47} 2 |1 3
{1347} 3 1 3 7
{1747} 0
{1947} 31 3
{2347} 4|2 7
{29,47} 4 2 | 2 4 |2 15
{31,47} | 2 6 3 3 3 2 11 3 25
{3747} | 2 3 2 | 1|3 13
{41,47} 2 1] 1|1 4 |2 11
{4347} 6 3031311 |2]|1]3]| 23
{253} | 2 |126| 4 | 3 | 21| 21 18 | 3 198
{3,53} 2 | 24|11 |3|5|1]10]5]| 3] 3r
{5,53} 0
{7,53} 6 3] 3 1 2 13| 19
{11,53} 2 2
{13,53} | 2 2 3 1 3] 11

continued on next page
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TABLE A.2: Imprimitive sextics with |S| = 2 (cont.)

S T13 T11 T10 Tg S; Szr T6 T5 A4 D6 Sg 06 Total
{17,53} 2 2
{19,53} 2 11 |1 2 4123 16
{23,53} 10 3 ) ) 6 3 32
{29,53} | 2 2 4
{31,53} 2 1|1 4 8 | 4| 3| 23
{3753} | 8 3] 11
{41,53} 0
{4353} | 2 | 6 3] 3 1 2 | 1|3 21
{4753} | 4 | 2 1|1 2 |1 11
{2,59} 2 | 144 6 | 24 | 24 24 | 4 228
{359} | 8 | 4 9 2| 2 6 126 |3 | 52
{5,59} 2 | 2 1|1 2 |1 9
{7,59} 4 4122 5 10[5] 3] 35
{11,59} 2 1|1 2 |1 7
{13,59} 2 1|1 1 2 1] 3| 11
{1759} | 2 | 6 313 2 |1 17
{19,59} 4 2 | 2 2 4123 2
{23,59} 8 4 | 4 4 |2 23
{2959} | 4 | 2 1|1 2 |1 11
{31,59} 6 1] 3] 3 2 41 2] 3] 24
{37,59} 8 1| 4| 4 2 41 2] 3| 28
{41,59} 2 | 2 1|1 2 |1 9
{4359} | 8 | 6 303 |3|1]1]2]1]|3] 31
{47,59} 2 1|1 2 |1 7
{53,59} | 2 4 2 2 2 4 2 19
{2,61} 60 10 | 10 | 7 | 2 12 | 2 7 112
{3,61} | 28 4 2 |16 2 2 3 | 32 16 | 8 | 12 | 126
{5,61} 4 30 7
{761} 12 | 12
{11,61} 2 1 1 3|1 1 2 3 15
{13,61} | 4 6 4 3 3 4 2 12 39
{17,61} 31 3
{19,61} | 2 2 1 1 4 2 1] 12 25
{23,61} 4 1 2 2 3| 2 1 4 2 3 24
{2961} 3 3
{31,61} 2 1 1 3| 4 2 1] 12 27
(37,61} 3 12 | 16

continued on next page




TABLE A.2: Imprimitive sextics with |S| = 2 (cont.)

75

S T13 T11 T10 Tg S; Szr T6 T5 A4 D6 Sg 06 Total
{4161} | 2 2 3 1 3] 11
{43,61} 12 | 12
{a761} | 2 | 8 14| 4 2 4123 30
{53,61} 6 313 (3112 |1]|3] 23
{59,61} 4 12| 2 2 41213 20
{2,67} 8 36 1 6 6 7T 2 12 | 2 7 88
{367} | 2 | 12 4161|6320 105 | 12| 81
{5,67} 4 1 2]2]3]2 4123 24
{767} 6 1] 313 8 412 12| 39
{11,67} 2 1 1 1 2 4 213 16
{13,67} 12 | 12
{17,67} 3] 3
{19,67} 2 1 1 4 2 1] 12 23
{23,67} 2 1|1 1 2 1] 3| 11
{2967} | 2 31 5
{31,67} 6 3031341 |2]1]12] 3
{3767} | 2 | 8 4] 4 8 4 12|12 45
{41,67} 4 2 2 2 4 2 3 20
(43,67} 6 3036|422 1]12] 39
(47,67} | 2 3| 5
{53,67} 6 3 311 2 | 1] 3| 23
(59,67} 2 1 3|1 2 13| 15
{61,67} 2 4 2 12| 23

TABLE A.3: Imprimitive sextics where S contains 3 primes.

S T13 T11 T10 Tg SZ Szr T6 T5 A4 D6 53 06 Total
{2,3,5} 624 | 2002 | 44 | 375 | 143 | 143 | 15 | 31 1 434 | 31| 15 | 3858
{2,3,7} 642 | 2100 | 28 | 345 | 150 | 150 | 120 | 120 | 8 | 420 | 30 | 60 | 4173
{2,5,7} 32 | 532 2 15 | 38 | 38 | 15 6 1 84 | 6 | 15| 784
{3,5,7} 54 66 4 1106 | 11 | 11 7 80 1 | 12020 | 28 | 508
{2,3,11} | 878 (2394 | 8 |493 | 171|171 | 15 | 35 1 (490 | 35| 15 | 4706
{2,511} | 44 | 630 | 4 | 21 | 45 | 45 98 | 7 894
{3,5,11} 76 90 6 | 163 | 15 | 15 23 138 123 | 7 556
{2,7,11} 86 | 602 6 10 | 43 | 43 | 15 ) 1 |70 | 5 |15 | 901

continued on next page
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TABLE A.3: Imprimitive sextics with |S| = 3 (cont.)

S T13 T11 T10 Tg S; Szr T6 T5 A4 D6 Sg CG Total
{3,7,11} 30 | 102 93 | 17 | 17 7 76 | 1 | 114 |19 | 28 | 504
{5,711} | 8 6 1|1 |1 2 1221 7| 40
{2,3,13} | 632 | 2100 | 46 | 345 | 150 | 150 | 120 | 120 | 8 | 420 | 30 | 60 | 4181
{2,5,13} 62 | 532 6 15 | 38 | 38 | 75 6 5 | 8 | 6 | 16| 882
{3,5,13} 44 72 14 | 106 | 12 | 12 7 80 1 | 120120 | 28 | 516
{2,7,13} 42 | 700 2 15 | 50 | 50 | 180 | 24 | 12 | 84 | 6 | 60 | 1225
{3,7,13} 76 78 6 87 | 13 | 13 | 21 | 247 | 3 | 114 | 19| 91 | 768
{5,7,13} 4 12 1 2 2 14 8 2 12 | 2 | 28 87
{2,11,13} | 48 | 1050 | 2 30 | 75 | 75 | 15 9 1 1126 | 9 | 15 | 1455
{3,11,13} | 46 | 120 | 24 | 147 | 20 | 20 7 88 | 1 | 132 |22 | 28 | 655
{5,11,13} 6 30 2 3 5 5 7 3 1 813 |7 90
{71113} | 2 | 30 305 | 5 | 14|12 2] 18]|3]28]| 122
{2,3,17} | 852 2590 | 66 | 493 | 185 | 185 | 75 | 35 | 5 | 490 | 35 | 15 | 5026
{2,5,17} 70 | 644 8 15 | 46 | 46 84 | 6 919
{3,5,17} 44 | 108 | 14 | 147 | 18 | 18 7 22 1 (13222 7 540
{2,7,17} | 108 | 546 6 10 | 39 | 39 | 15 ) 1 70 | 5 | 15| 859
{3,7,17} 54 90 4 | 106 | 15 | 15 7 80 120 | 20 | 28 | 540
{5,7,17} 2 12 2 2 2 4 24 | 4 7 59
{2,11,17} | 74 | 714 4 30 | 51 | 51 126 | 9 1059
{3,11,17} | 58 | 126 4 1126 | 21 | 21 7 21 1 (126 | 21| 7 539
(51117} | 4 | 36 | 2 | 3 | 6 | 6 18 | 3 78
{7,11,17} 6 66 10 | 11 | 11 ) 30 | 5 | 7 151
{2,13,17} | 168 | 238 | 16 3 17 | 17 | 15 3 1 | 42 | 3 | 156 | 538
{3,13,17} | 188 | 108 | 52 | 334 | 18 | 18 7T 11281 1 | 192 32| 28 | 1106
{5,13,17} 14 6 6 1 1 7 1 1 6 1 7 o1
{7,13,17} 2 30 4 3 ) ) 14 | 12 2 18 | 3 | 28 | 126
{11,13,17} | 4 24 4 6 4 4 4 24 | 4 7 85
{2,3,19} | 894 | 2324 | 8 |459 | 166 | 166 | 180 | 136 | 12 | 476 | 34 | 60 | 4915
{2,5,19} 48 | 672 2 22 | 48 | 48 | 15 8 1 (112 8 | 15 | 999
{3,5,19} 64 | 108 4 | 147 | 18 | 18 | 14 | 88 | 2 | 132| 22 | 28 | 645
{2,7,19} 46 | 518 2 15 | 37 | 37 | 180 | 28 | 12 | 98 | 7 | 60 | 1040
{3,7,19} | 160 | 102 163 | 17 | 17 | 28 | 299 | 4 | 138 | 23 | 91 | 1042
{5,7,19} 4 24 3 4 4 14 | 12 2 18 | 3 | 28 | 116
{2,11,19} | 85 | 1092 39 | 78 | 78 | 75 | 10 | 5 | 140 | 10 | 15 | 1627
{3,11,19} | 30 96 75 | 16 | 16 | 14 | 72 | 2 | 108 | 18 | 28 | 475
{5,11,19} | 44 7 1 7| 59
{7,11,19} | 10 35| 4 |56 | 1]28] 89

continued on next page




TABLE A.3: Imprimitive sextics with |S| = 3 (cont.)

7

S T13 T11 T10 Tg S; Szr T6 T5 A4 D6 Sg CG Total
{2,13,19} | 54 | 798 2 21 | 57 | 57 | 120 | 28 | 8 | 98 | 7 | 60 | 1310
{3,13,19} | 76 | 138 6 | 106 | 23 | 23 | 21 | 260 | 3 |120| 20| 91 | 887
{5,13,19} 4 42 2 3 7 7 7 12 1 18 | 3 |28 | 134
{7,13,19} 4 30 3 5) 5) 21 1 39 | 3 18 | 3 | 91 | 222
{11,13,19} | 6 42 3 7 7 7 12 1 18 | 3 | 28| 134
{2,17,19} | 156 | 546 4 10 | 39 | 39 | 15 ) 1 70 | 5 | 15| 905
{3,17,19} | 58 | 114 4 1147119 | 19 | 35 | 8 | 5 | 132 ] 22| 28| 671
{5,17,19} | 10 66 4 10 | 11 | 11 ) 30 | 5| 7 159
{7,17,19} 6 24 2 1 4 4 14 8 2 12 | 2 | 28 | 107

{11,17,19} | 6 18 2 3 3 3 7 3 1 813 |7 74
{13,17,19} | 18 12 2 1 2 2 7 8 12 | 2 | 28 95

A.2. Imprimitive Octic Tables

We partition the imprimitive octics into 2 groups, those with a quartic subfield and
those without a quartic subfield. For those octics having a quartic subfield, the fields were
further partitioned into new and old fields. A field is said to be old if it’'s Galois closure
is the compositum of smaller degree fields; otherwise, it is said to be new. Note that this
definition differs slightly from that in [9]. The key point here is that old fields can be easily
generated from tables of smaller degree fields by forming compositums and then computing
the subfields of the compositums.

As a final note, if a column had no entries, then it was removed from the table. So
if there is no column for a particular type of field, then that means that no fields of that
type were found for all cases in that table.
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TABLE A.5: Old octics with a quartic subfield (|S| = 2).

S T2 T3 T4 Tg T1 0 T1 3 T1 4 T1 8 TQ 4 Total
{2,3} 6 14 1 28| 8 7 22 | 24 | 132 | 242
{2,5} |18 12 |24 | 24 3| 8 | 18 | 108
{35} | 1 1 2 4
{27 | 6 | 1 [20|40| 24 | 7 64 162
(3,7} 1 1 2 4
{7y |1 1
{2,11} | 6 | 1 |14 |28 | 8 6 24 | 36 123
{3,11} 1 3 6 | 10
{511} | 1 2 2 5
{7,11} 1 1
{2,13} |18 | 1 |12 |24 | 24 7 10 8 60 164
{313} | 1 2 2 1 2 8
{513} | 3 3 6
{713} | 1 3 4
{11,13} | 1 1 2 4
{217} [ 18| 1 |30 |60 | 72 128 309
{317} | 1 3| 2 4 | 10
{517} | 3 3
{717} | 1 1
{1117} | 1 1 2 4
{1317} | 3 3 6 12
{209} | 6 | 1 |14]28| 8 | 7 | 13| 24 | 78 | 179
{3,19} 1 3| 2 4 ] 10
{519} | 1 2 2 5
{7,19} 1 3 4
{11,19} 1 3 4
{13,19} | 1 1 2 4
{1719} | 1 2 2 5
(2,23} | 6 | 1 20|40 24 9 | 64 | 54 | 218
{3,23} 1 3 6 | 10
{523} | 1 1 2 4
{723} 1 1 2 4
{11,23} 1 1 2 4
{13,23} 2 2 5
{17,23} 1 2 4
{19,23} 1 1 2 4
{2,29} |18 | 1 |12 |24 | 24 17 8 | 102 | 206

continued on next page




TABLE A.5: Old octics with a quartic subfield (|S| = 2). (cont.)

S T2 T3 T4 Tg T1 0 T1 3 T1 4 T1 8 T2 4 Total
{329} | 1 4 8 | 13
{529} | 3 3 6 12
{729} | 1 2 2 | 3 8
{11,29} | 1 1 2 4
{13,29} | 3 3 6 12
{17,209} | 3 3
{19,29} | 1 1 2 4
{2329} | 1 2 2 5
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TABLE A.7:

Imprimitive octics with no quartic (|S| = 1).

S

T3

Tyo

Total

{2}
{3}
{5}
{7}
{11}
{13}
{17}
{19}
{23}
{29}
{31}
{37}
{41}
{43}
{47}
{53}
{59}
{61}
{67}
{71}
{73}
{79}
{83}
{89}
{97}
{101}
{103}
{107}
{109}
{113}
{127}
{131}
{137}
{139}
{149}
{151}
{157}

O O P O O O O O O O OO OO OO OO OO OO OO o000 oo o0 oo o ooo

)
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TABLE A.7: Imprimitive octics with no quartic (|S| =1). (cont.)

S T3 3 T42 Total
{163} | 2 2
{167}
(173}
{179}
{181}
{191}

o O O o O

TABLE A.8: Imprimitive octics with no quartic (|S| = 2).

S T3z | T34 | Ty | Tao | Tys | Tie | Ty7 | Total
23} | 6 | 11] 90 | 12 | 110 | 28 | 542 | 799
(2,5} 1| 12 13
(3,5) 0
27} | 6 14| 22| 42
(3,7} 1 1| 2
(5,7} 0
(2,11} 2 | 40 3 22 | 67
(3,11} 0
(5,11} 0
(7,11} 0

We now give tables of specific octic fields. In the tables, L represents the octic field,
dr, denotes the field discriminant, (r,s) is the signature, G = Gal(L9/Q), h denotes the
class number, and C; denotes the class group. In the interest of saving space, and also
because fields having larger class numbers are more interesting, Table A.11 only lists those
fields having a class number greater than or equal to 100.

From Table A.9, one makes the interesting observation that every imprimitive octic
ramified at only p = 2, has a trivial class group. On the other hand, Table A.11 gives
examples of octics having highly non-trivial class groups; in fact, one octic even had a class
number of 15076.



TABLE A.9: All imprimitive octics ramified at only p = 2.

Defining Polynomial d, | (r,s)| G | h|Cp

28 + 62t + 1 222 | (04) | Ty | 1| Cy

28 +1 224 1 (04) | Tn | 1| Cy

28 — 420 + 82* — 42?2 + 1 224 1 (04) | Ty | 1| Ch
28 — 425 4 62* — 422 4+ 2 225 1 (0,4) | Toy | 1| Oy
28+ 428 —22% 4 422 41 226 1 (0/4) | Tio | 1 | Ch
28 — 426 — 2% — 422 41 2261 (42) | Ty | 1| Oy
¥ 4t — 422+ 1 2261 (04) | Ty | 1|4

28 — 420 +100% — 822 +2 | 227 | (04) | Ts | 1| Oy
28 —22% +2 227 1 (0/4) | Ty | 1 | Ch

28 + 221 42 227 1 (0/4) | Ty | 1| Cy

28— 224 — 1 —22 1 (23) | Ts | 1| ¢y

28 — 62t — 822 — 1 —228 1 (23) | Ts | 1| Oy

28 — 428 + 100t +422+1 | 228 | (04) | T | 1| C1
28 —4x8 — 22t 1222 +1 | 228 | (42) | Tao | 1 | O
a8 + 425 + 42* — 2 —2291(23) | T30 | 1 | Cy

a8 — 425 + 42* — 2 —2291(23) | T30 | 1 | C1

x® — 428 + 82 — 822 + 2 229 | (42) | Tos | 1 | Oy
28 + 420 + 821 4 822 + 2 229 1 (0,4) | Tos | 1 | Oy
28 —4xb 4220 + 422 -1 | =239 | (6,1) | Tor | 1| Oy
28 + 420 4+ 221 — 422 — 1 2301 (2,3) | Tor | 1| Oy
28 —4x0 4624 —4a? -1 | =230 (23) | Ty | 1 | Oy
28+ 420 4624 + 422 -1 | =230 (23) | Ty | 1 | Oy
28 —2 2311 (23) | T | 1| Oy

28 — 8zt —2 2311 (23) | T | 1| Oy

28 — 8zt — 822 — 2 =230 1 (2,3) | Tor | 1| Oy

x® — 8zt 4+ 822 — 2 —231 1 (6,1) | Tor | 1 | Oy

28 4+ 828 + 202t 1622 +2 | 230 | (04) | Ty | 1| Cy
28— 825 + 200t — 1622 4+2 | 231 | (80) | Th |1 | 4
28 +2 231 1 (04) | Ts | 1| Ch

28 — 820 — 1224 + 2 221 | (42) | T | 1| Cy

28 — 4zt 42 231 | (42) | Tig | 1| Ch

28 + 4zt 42 231 1 (04) | Tig | 1| Ch

28 — 820 + 2424 — 3222 +18 | 231 | (04) |Th7 | 1 | Oy
28 + 820 +240* + 3222 +18 | 231 | (04) | Thr | 1| Oy
28 — 4at + 822 + 2 2311 (0/4) | Tos | 1 | Cy

8 — 4zt — 822 + 2 231 | (42) | Tos | 1 | Oy




87

abnd 1x2U U0 PINULIUOI

D T || (08| .61 T960€ + T66L + ZTTGIVT — ¢TEI — TIRGT + ¢TTIC + ¢TF8 — ,T — T
eO% | 2t | ELL | (F'0) | 4991 I89T + TGI/T + ZF60T + ¢TTIVC + 3 TE0E + ¢TGE — oTTV + , 7€ — ¢T
D T || (0°9) | €91 I¥C — TYGTT — ZTTET — ¢TTE — TTHY + TEY + gTFF — , T — ¥

D T | %81 | (£2) | €91~ 6T — T6E + & — (TTE — TGT + (6 — ¢T9 + ,TE — o

€D ¢ | %L | (€T) | (89T~ VGG — T8 + ;7TE + ¢96 + 1 18F — (T + ¢ TG + ,T€ — ¢

D T | 88L | (19) | (€91~ 6+ TLT + TGT — ¢T8E — ;26T + (TET + o TG — , % — ¢

D T | 880 | (19) | (€91~ 8 + LY — ZT0L + ¢T8 — TV — ¢T6E + gTTIT — ,T — ¢T

%) T | % | (F0) | ;€91 9T + T8 — ;TF + (I8 — ;TG + TF — T + ,T — T

D T | 881 | (€2) | ,68T— | GG8¢ — TTILOT + LTI88G — ¢ZTG6T + 4 280L — TTET + oTL + ,TF — o
D T | &r| (g2 | 68T~ 9EF — TGIT + ;TT8T — ¢TEE + [ TET — oTL — oTL + ,TF — ¢T
D 9 | TL| (70) | o6€T 9T + 89 — ;TGET + (TLET — TTL + TVT — TR + , TG — ¢T
€D ¢ | "L | (F0) | o681 96T + TF9 — ;TIT — T9G + ;L0 + (T + T — ,T — o

o | LT | Y| (B'0) | L2ET | L09L + T8T]TT — Z6FI6 + (LLILE — $TFG6 + TGOT — g6 + ,T — o
D T | 'z | (0'9) | ,e1T CLET + TRGL — fTO6VT — ¢TLIE + ;TTIG + (TIT — gT6Y — ;7 — T
D T | fer | (€e) | LL0T— C6L — TLLEY + zT66C — ¢TI6G + ;T8 + (T8I — §TFT + ,TE€ — T
D T | €| (€a) | 01— 8C — TL8 — g TVL + TG + ;6 — (TL — oTL + ,TF — ¢T

€D ¢ | "L | (F0) | ¢L0T 9T + ZZGL + [ TFT + oT8 — ¢

D T | 2| (09| ,.6 €61 + TG6TT + zTTOLT — ¢T6TL — TLOY + ¢T6S + gTTF — ,T — T
ey | err | iz | F0) | .68 C1G + 29T — ;TO9TT + ¢TGLG + TEFT — TV — gT9 + ,T — T
8y | 68 | 'L | (F'0) | L€ 9607 + TZTIG — 7T0TE + (TIET + XYY — (TLT + ¢TG + , T — T
D T |%r| (g% | 65— GTT — TETT + zTIET — (TET + € — (TL — oTL + ,TF — o

o) T |®r| (€% | 65— 6C + TG + ;2GT + ¢TGE — ;TTG — ¢TIT — gTGT + ,T€¢ — ¢T

€D ¢ | VL | (F'0) | ¢69 9T + X8 — TP + (TOT + T — (TG + o + , T — T

D T || Go | .17 6G + TO9T + ZTEGT + ¢TES + 1 TTV + TT1T — gT€ + ,T — T

D T | 2| (09 | L1 T+ 2% + 20T — ¢T0T — 3 2GT + (L9 + ¢TL — ;& — T

D |y | D |w] T [eTwouA o Suruya(]

"7 < d 10] )y pUR }Y SO[qR], WOIJ $O1990 [[V :0T' Y d14V],




8D 8 | % | (¥'0) | ,6@¢ LT + ZEY — TTL + (T6G — jTEE + (TL — oTL + ,TF — T

8D 8 | O | (30) | ,6CT | €6SVTT + T0EL — ZLIFFT + (ZEEVT — 1 ZOTL + oTL — gTL + ,TF — T
8) | 8 |91 | (¥'0) | .68 916 + ;T63C — gF

8D 8 | % | (¥'0) | ,60¢ €TTE + TT0G — 7T6GL + ¢TLTIG — $TCIT + (TL — oTL + , 77 — ¢T
ey | g1t | "L | (F'0) | o658 I8 + ¢T1CT — TG + ¢2TT + ¢T

ey | g1 | "L | (F'0) | o468z 96T + ZTLT + 3%96 + gTIT + T

0] ¢ | % | (F'0) | <6CC GOGRY + T8F] — TTIT — ¢T63T — yTI8 + (TLG — ¢

€D ¢ | "z | (F0) | 4608 €8T + TLIT — zTTTT + ¢T8T — $TGE + (TPT — TP +

D T | 9% | (F0) | ¢6a¢ I+ — 06+ 28 — TF + ,T — T

D |y | D (W] T [eTwouA o Suruya(]

88

(1u00) g < d 10 )Y PUR §'y S9[QR], WOIJ SO1900 [V 0]V dAT14V],




abnd Jx2U U0 PINULIUOI

CoLoLl) 8¢T | 6L | (F'0) | ,LT9z0 LT+ 289 + ;89 + o
TDEDTDOD | 8gT | €L | (F'0) | 1LTgz0 TEEE + £7880T — ;89 + o
TOVO80 8¢T | 6L | (F'0) | ,LTgzC 9ET + TFFG — ZT9T8 + ¢TFFG — ;TIET + T
THTDT) 8CT | %L | (1'0) | ,LT3c0 QT + GTIET + o
OO 8CT | “4L | (F'0) | ,LT44C CLBSE + LTTCEY + ;789 +
THTOED) | 8T | €L | (F0) | L2140 TEEE + TTGEY — TILTT + ;189 — o7
SOOI 8CT | %L | (1'0) | ,LT40 QT + LTFVS + 501G + o
20%D%D | 8¢l | 8L | (7'0) | olTogl 629 + ;791G + 4 TTTT + oTTT + T
TOEOYD8) | 8T | 8WL | (7°0) | oLlgzC I8 + T80T + ;7T8 — ¢ZgT + ¢T
c0tOv080 | Sl | 8L | (7'0) | ollypgC 006 + 2878 + 1 TFF — oT8 + T
TOEOYD8) | 8T | VL | (70) | oLIygC 6801 + XTIV + XTI — ¢TF + g
%8080 8eT | 8WL | (F'0) | oLTygC T+ 2% — T0F + g% — ¢
%8080 8CT | 8LL | (F'0) | oLTyg0 T+ 27 + ;207 + g2F + ¢
¢H808D 8CT | O | (1'0) | oLTyeC PPPT + Z2F8L + 47T6 + oT8 — o
SOVOYOYD | 8T | VL | (7°0) | oLTz0 18 + Z00G — ZTTLLT + ¢T099 — ;TOV8 + ¢TTET — gT09 + ,TF — ¢T
COEOYD8D | 8T | VL | (1°0) | oLTz0 T9ETE + TI66T — zTRTEE — ¢TFTG — TTEY + T + ¢T8 — ,TF — T
¢ 0cT | "L | (3'0) | <€Cqet CLVT + ZFT0T + ;80T + ¢Z9T + T
3'0) eIt | %L | (7'0) | 16Gg0 620G + TV — 20T + oTF + gT
“0TH GOT | AL | (F'0) | €GoLT 2GeS + TO6ET — ZTEOLT + ¢TFHG — TTLT + ¢TTT — gTTT + , 7T — T
017911 POT | 210 | (7'0) | oligC 0S¥T + ZTTGET + $TTLI + ¢TIG + T
T V0T | OLL | (3'0) | oLTgz0 9GEY + T8TE — $RCT + 28T + o
tDTD) VOT | 2L | ('0) | olTgz@ 96781 + T/VE6 + yTV6ET + ¢TI + ¢T
tDTD) V0T | 1L | ('0) | cLT4g@ E167 + Z89VE + ;TITR + 4289 +
9] 201 | 8L | (F'0) | 640 6CT19T + ;Z88FS + ;2086 + ¢T9C + ¢T
010D 00T | L | (7°0) | $6T,AT TGE9T + TTG68T — ;Z0LTI6 + ¢TGFIT — ;TGLET + (T6L — gT8L + , % — ¢
gh) Y D | (s'4) p [eTWOUA O] Suruya(]

00T < Y IOqUINT $se[ FULARY 87y PUR Q'Y ‘G SO[qRL, WO $O1O0 [[Y TV ATAVL




abnd Jx2U U0 PINULIUOI

TOTED 8¢l | 6L | (F'0) | o€C1eC VEEVT + ;Z0FP06T + X88TT — o
[folioL'e; 8¢l | %L | (€T) | ,L11e0— 920LE — £202G6 + ;X089 — ¢
[folioL's; 8e1 | %L | (€T) | L1 1e0— 0STTT — z70089 + ;TFG — ¢
¢H808D 8¢T | %L | (7'0) | ,LT1gC VLTTT + 0918 + ;T0F0T + ¢
tD8%08%0 8T | %L | (F'0) | ,LT¢C 0SG1C + ;T8VIT — TTLT + ¢
TOVO80 8eT | 921 | (€C) | JLT e 0GCTC — 720089 — TFFG —

et | 8zl | 9L | (F0) | ,LTeC 0STTT + $TTLT + ¥
YOVO%) 8¢1 | 9L | (€%) | AT ¢0— 98T — $TITR + T
tD%08D 8cT | %L | (7'0) | ,LT1¢0 0GCTC + Z8TVT + ;TTLT + ¢
eOTHVO8D | Sgl | fIp | (€T) | LTqe0— Ve — T
ZO8D8D 8aT | 1L | (€T) | L1160~ PHG — o
%8080 8eT | 9L | (¥'0) | ,L1¢C VL0CT + 20918 — $L0F0T + ¢

80910 8e1 | 6L | (F'0) | ,LTgz0 L6EVT + ;3608 — 3816 + ¢T89 + ¢

87910 8¢T | 6L | (F'0) | ,LTg0 €LVL9 + ;T80GS — ;T986 + §T8Y + ¢

80910 8CT | 6L | (1'0) | ,LTgeC L6EVT + ;23608 + 3 T8T6 + ¢T89 — ¢

891D 8¢T | 6L | (F'0) | ,LTg0 €LVL9 + ¥80GS + ;X986 + §T89 — T
TOVO8D 8CT | YL | (1'0) | ,L1.0 PPOTL + ;Z09T8 + ,TTT9 + T

eHTDED) | 8l | 9L | (F0) | ,21,.€ 7999 + I8VTT — ;TV0C + ¢T
eOTEO) | 8Tl | L1 | (F'0) | AT, 9GF9T + ;20918 — ;TOTOT + ¢
SOLOLOL®. 8cT | 1L | (7'0) | ,LT,40 IV6TET + ;2968F + ;TO6TT + ¢789 +
CoLoLL0) 8¢l | 1L | (F'0) | ,LT..¢ 9FEVET + ;L9687 — 3 L06TT + T8I — T
TDEDTDO) | 8gT | AL | (F'0) | LLT..¢ V6ETLT + 729,68 — ;T90E + ¢T
[folioL's; 8¢l | 6L | (F'0) | olTqeC 008 + z79G% — ;796 + ¢TIT — ¢
[folioL's; 8¢T | 6L | (F'0) | olTqeC 008 + z79GT + ;796 + ¢TIT + ¢
THTHT) 8CT | %40 | (7'0) | ,LT940 TLT + TVHG — 4 TTLT + T
gh) Y D | (s'4) p [eTWOUA O Suruya(]

90

(*1u00) QT < Y Iaquunu sse[d SUIARY Q'Y PUR ‘'Y ‘G'Y S9[(R], WOIJ SO1900 [[Y :[1'V dAT1dV],




abnd Jx2U U0 PINULIUOI

01908 00z | 4L | (7'0) | ,LT@ 880T + ZFTYIT + ,L0ECT + ¢289 + o
tD%) e6T | YL | (7'0) | ¢6Cyz0 0£9€ + TFOEL — 70CIS + ¢T0GST — $ZOTT + (LTE — gT8 + T
FoLI/o) c61 | 3L | (€T) | L1 1e0— VGLT — 3 TTLT + o
0215 0LT | 8L | (37'0) | o6Cgz@ V9EE + 7 T8TLI + ;X0E0T + ¢TITT + ¢T
0219 0LT | 4L | (7'0) | oIT(e0 8T08TT + LTTI6TE + ;TFRIT + ¢ 18] + ¢
&1%0) POT | L | (F°0) | oS1e@ 0S7Z + z2000G + ;£00S + ¢Z0F + T
&%) VOT | WL | (F'0) | 96, AT | €PFGLTT + TTLFS6T — ZLEGHE — ¢TOIFGT + 1 T8FGE + (T80L — oFT9 + ,& — T
0L VOT | 410 | (3°0) | ,6CcET | €L160C + TCGTY6TT — ZLETLRI + ¢L009ST — $ZFIFH + TRIG — oTTL + ,T¢ — o
6981 e91 | 8L | (7'0) | ,6Tge 9L + ;TY0E + ;T0SE + oTTST + T
6281 e9r | 'L | (7'0) | €10 CCILG + ;TTCTGE + 4 TOREE + ¢ TFOT + o7
0919 09T | "L | (7'0) | ¢6G,40 8T6 + TRTIS + ;T8]TT + ¢ZF9 + ¢
o) 09T | 81 | (7'0) | ¢€Coco 9T + ZTTE — $TO9L + ¢T8 — T
o0 09T | 81 | (7'0) | ¢€Cocd 9T + ZZTE + 3TO9L + ¢T8 + T
eHTHOT 09T | %67 | (7°0) | oLTgel ET67 + ;T08LG + $TITET + ¢8I + T
SOl X 09T | %6L | (F'0) | cLTgz0 VOE6E + ZTTLYET + ;TFIGT + ¢T89 + ¢
91D 96T | "L | (F'0) | o650 8C6 + ZTIGRT + ;2969 + gTF9 + ¢
0D VT | 2L | (F'0) | €010 V8T + zTIEL + ;Z00F + gT0V + g7
0L T | 8L | (7'0) | €810 TETV + TVV6C + TTCG + oT0V + o
tD%0%D T | OIL | (7'0) | olTogd 68C + TIGTT + ;ZIV9 + ¢T89 + ¢T
tD%0%D T | %L | (7'0) | olTogd TE€9T + THGTT — fTTETT + ¢TIET — ;TOGE + ¢TTE + ¢T
tO%9D 9¢T | 1L | (F'0) | ,LTg0 TLT + 7T888L + L TFEET + g¥89 + T
tO%9D 9¢T | 9L | (F'0) | L1410 TPS + ZZ09ET + TVLE + TFE + o
tD99D ce1 | L | (F'0) | €CeC 9V + ;TTGG + ;T9GT + gTTE + ¢
tD99D ce1 | %L | (F'0) | 48C1cC 8GOT + ;2036 + $TILG + ¢ZTE + ¢
0£1) 06T | 8L | (F°0) | o6ColT | €06009 + TGISSTT + ;£9T09E — (LIEF] — 1 TE6IT + T09E — oT06 + , & — ¥
gh) Y D | (s'4) p [eTWOUA O] Suruya(]

(*1u00) QT < Y Iaquunu sse[d SUIARY Q'Y PUR ‘'Y ‘G'Y S9[(R], WOIJ SO1900 [[Y 'V dAT1dV],




abnd Jx2U U0 PINULIUOI

e c6c | L | (F'0) | LLT4G 9T9T + THHOT + ;200G + ¢Z6TT — 4267 + (L9 + o201 + ,T — &
6 c6c | 'L | (F'0) | o€TcC 289.L6 + ;TZCTGE + ;,TOREE + ¢ TFOT + ¢
062 06 | 4L | (3°0) | ,6CzzC 0063 + 7 T80T + ;ZOSHT + ¢TITT + ¢T
tD9DeD 88C | LIL | (F'0) | oLTeC 8V0ETTT + g TFVLLE — 3TOTLE + ¢T
92D 9.z | 8L | (F'0) | ,6G¢C 869 + TTRE8 + ;T8VE + o
I£50) v.e | L | (F'0) | 670 e¥909% + ZTFFL60T + ;T0CTL + gTTST + T
tD%L) ¢Le | L| (70) | ,LTeC 98.7C + ;796099 + ;T80GG + ¢TIET + ¢
tD%LD) cle | 0L | (7'0) | L1440 0629 + 0009 — zTOVST + ¢TT66 — 1 TFLY + ¢TFG — gTHG + ,TF — T
YOV 96¢ | 9L | (7'0) | ,LT1¢0 0STTT + §TTLE — ¢F
tO8DD 99¢ | %L | (7'0) | ,LT¢0 0G8 + ;78801 — ;7880T + 789 + ¢
OV 96z | 4L | (F'0) | LLT..¢ 7290€ + ;X9L68 + ;TITET + T
TDTDD 8¥C | OLL | (F'0) | ¢£Cgz0 620G + ZTITTIC + T8L6T + oTT6 + ¢T
torer) 8¥C | 92L | (F'0) | ¢£Cgz0 620G + ZT8VEY + 1 TFGTT + oTT6 + T
eovetny 8¥C | 6L | (F'0) | 9€CgzC 911¢ + ;22Eeh + ;29T11C + ¢ZT6 + ¢T
tD%O9D 8¥¢ | L | (F'0) | ¢€Cg0 89€L0T + LOTETY + ;TIE0E + §TT6 + ¢
9%eeH 9z | 'L | (F'0) | ;1Tc0 T8T6T + TI6CIT + 1 TOCHT + 9788 + ¢
THYOLH 80z | 9% | (F'0) | ,LT11cC 06889 + ;ZFFEL + 289 + ¢
Fol’) 80 | 1L | (7'0) | ,LT1¢C VETEEE + ;20CLT + ;T0T0T — g7
tOYOL) 80z | 9L | (7'0) | ,LT1cC 0G889 + TFVEL — ;289 + ¢
tOVOLH 80 | 9L | (7'0) | ,LT1¢C VETEEE + £T0TLT — ;T0T0T — ¢
TDTOED 80z | 9L | (F'0) | olTgzC 12ECT + ;20TTE — $2TTY + 20T — T
SOL0LE0) 80z | 9L | (F'0) | olTgzC 126 + zT9LT6T + 3 T0E0T + gTIL + T
059) v0z | OUL | (3'0) | o6CqzC 6616C + TFISLT — T89S + ¢TFTIT — $THGIT + gTTL — T
859) v0z | 2L | (7'0) | o6C4zC 680€T9 + L ZOTICE — T]FE + 7
gOTOL) Y0z | 8L | (F°0) | ¢£C.z¢ COS8LT + Z¥8808E + ;868 + ¢%T6 + ¢
gh) Y D | (s'4) p [eTWOUA O Suruya(]

92

(*1u00) QT < Y Iaquunu sse[d SUIARY Q'Y PUR ‘'Y ‘G'Y S9[(R], WOIJ SO1900 [[Y :[1'V dAT1dV],




abnd Jx2U U0 PINULIUOI

TH8ED 969 | L | (F'0) | LLTcC 06889 + ;8T69T + 1 LTEEE + gTICT + T
tOTOYILD) 969 | L | (F'0) | oLTeC C9ILGOE + ;T098L + ;TORLSG + ¢TIET + T
SO oLILe) 78S | 411 | ('0) | o€C1eC 0SV9C + TT6EST + yT8VOT + oTF8T + ¢T

gHY9T) 8¢S | 8L | (1'0) | ,LT4e0 €GT + ZT9LY + 3 TOVE + §289 + T
09D | TIG | UL | (F0) | LTl 9LTT + g7

THTH8O) | 21s | L | (F°0) | ,LT1eC 9¢T + o
SOVO808) | 21 | VL | (50) | oLlyga GTTT + VOV — FL + oTF + g

oD ¥8% | 4L | (7'0) | ,€TcC 0G860T + ZTTGTSE + $T08EE + oZFOT +
COLORLLY) 7Ov | %51 | (7°0) | ¢€Coel LOTTT + TILTET + 3 TTCIT + ¢TT6 + ¢T

&OTEL) POv | %51 | (7'0) | €0 VEEVT + TT6ESGT + ;T8IIT + ¢TT6 + ¢T

T SFF | 9L | (F'0) | ,LT4.0 80GG + 89 + T
CoLokily) cev | L | (F'0) | LETeC 9z + ZZF0T + 26 + ¢
tDEOTOTH 9% | 9L | (F'0) | oLTgzC 0807 + TOR0F — zZFFST + ¢T089 — $TFCI + ¢TFy — ¢T
oL o1l0) 9% | UL | (F'0) | oLTgzG GT90S + ZF/VET + T8ELT + ¢%09 + ¢
TOVOTED 917 | 2L | (7'0) | oLTyg0 60VET + ZTVEIV — 79T + ¢
THTOEED 97 | 2L | (7'0) | oLTyg0 TTGE] + 1 TTLE — T
tHEOYOL) 9% | 9L | (F'0) | oLTyz0 GTT + ATV + $T09T + ¢TOV + T

ON0) 007 | %L | (#0) | 9€Cgg0 GTTS + TOIVCT + ZITITT + ¢TFR]SG + ;TFITT + (T9E — ¢T09 — ,TF — ¢
¢DD0TH 007 | 4L | (7'0) | olTeC VLVISY + TTGEI0T + ;T88T9 + gTIET + 7

ZOEOIN0TH | 00% | YL | (F'0) | yLTcC CVOLIT + ZT098L + ;TO8LS + ¢TIET + 7
) 88¢ | AL | (F'0) | ,ET(cC V6EY + ZLTCTCE + T08EE + ¢THOT + T
8680 8ee | AL | (F'0) | o6TcC TVRE69 + XOOFFFT + 329L9L + TTGT + T

TOVIT) 8ze | 'L | (F'0) | ,LTg@ CLT + ZTO9ET + ;T8LG + ¢ 789 + ¢T

OO 02e | 452 | (70) | cL1gC 906G6L + T8Y8VCT + 1 T09F9 + §TIET + T
) 90¢ | 8L | (F'0) | ,6T..¢ COLLT + ZTTTETT + 3 TOTLT + gTIL + ¢
gh) Y D | (s'4) p [eTWOUA O] Suruya(]

(*1u00) QT < Y Iaquunu sse[d SUIARY Q'Y PUR ‘'Y ‘G'Y S9[(R], WOIJ SO1900 [[Y 'V dAT1dV],




9L0STH 9L0ST | 'L | (7#70) | ¢6C,LT | STBTEET + TTEOILE + ;L8VVLY — ¢TTLGL + (TFEGE + oTGTG — oTT9 + , % — T
COLEEED eSTIT | 'L | (710) | ,LT1c0 98L7C + ;TIETLT + ;T88LT + ¢TIET + o7
500889 00T% | 4L | (#°0) | ,6C1¢0 TVeasye + ;Trec06€ + T0TRIT + ¢TTET + ¢
908 8¥¥e | L | (70) | ,LTc0 0G889 + TF0EIS + ;TFI6T + oTIET + ¢T
T | 8FFE | L | (F'0) | LLTET 9€GG9 + TOFRGE + ;TIEET + ¢T8TIT — 1 TR0E — (TGTT + ¢TLT + ,T — ¢T
eLeL) clee | 'L | (7'0) | 6010 CRIT + TFET06E + T0TRIT + ¢TTET + T
T8 PPLT | AL | (770) | L2140 VETEEE + ZT8098L + ;TO8LS + ¢TIET + 7
FONLD) 00LT | 'L | (570) | ¢6G¢C CVVLT8T + ;TVTT06€E + T0T]IT + §TTET + T
Coae Vvl | AL | (70) | ,L11eC 0G8 + 7TR098L + ;T08LG + ¢TIET + ¢T
V6EL) V6eT | L | (770) | 16C¢C CISTIFT + TFTT06E + 1 T0C8IT + ¢LTET + ¢
00ET 00€T | 4L | 70) | ,6C¢C CTT06€T + ZT7TT06E + 1 T0C8IT + oLTET + ¢
THBID%D | 9681 | L | (F'0) | ¢LT1¢0 CTEST + ;T8098L + ;TO8LE + ¢TIET + ¢
f012%p) 880T | 8L | (€°C) | ;2T 1¢0— VGLT — 3 TTLT — T
OVED 820T | 'L | (7°0) | 1€C¢0 2896GG + ;TTLIV6T + ;TORGOT + ¢TFRT + ¢
7967 796 | L | (70) | o€TcC C9G9T + ZTTSTGE + ;T08EE + ¢TTOT + 7
&HTHTTH 808 | LLL | (7'0) | ¢£T1cC TTS6 + LZFIV8 + ;T80TT + oLF]T + o
tHTHETH 808 | LIL | (¥'0) | <6G,€T BOEVE + TF88T — ;T66ETT + ¢TLYLT + ;760G + (T86 + o168 + ,T — ¢
TOV8ED 89L | 82L | (¥'0) | 68,20 ¢02L09 + zTTTL06 + 5 T0C6T + gTITT + g7
TOV8ED 89L | 8L | (¥'0) | ¢68,z0 2891 + zTH01G + ;TTHE + gTITT + o7
¢D%0%9) 0cL | 4L | (F'0) | olTeC 8TOTL6 + 7T960VET + ;£96G9 + gTIET + ¢
gh) Y D | (s'4) p [eTWOUA O Suruya(]

94

(*1u00) QT < Y Iaquunu sse[d SUIARY Q'Y PUR ‘'Y ‘G'Y S9[(R], WOIJ SO1900 [[Y :[1'V dAT1dV],




95

A.3. Imprimitive Nonic Tables

We now provide complete tables for imprimitive fields of degree 9. For cases having
more than 2 primes, we partition the data into new and old fields.

Tables A.12, A.13, and A.14 give numbers of each type of field for various sets S.
As in previous cases, if a column does not exist for a specific type of field then that means
that no fields of that type were found for all cases in that table.

Tables A.15 and A.16 give specific field data, ordered by increasing class number. In
the interest of saving space, Table A.16 only lists those fields having a class number greater
than or equal to 8.

TABLE A.12: Imprimitive nonics where S contains 1 prime.

S Ty | T3 | Ty | Tio | T11 | T3 | Too | To2 | Tos | Total
{2} 0
{3} 1 1 1 2 1 1 3 3
{5}
{7}
{11}
{13}
{17}
{19} 1
{23}
{29}
{31} 1 1
{37} | 1
{41}
{43}
{47}
{53}
{59}
{61}
{67}
{71}
{73} | 1
{79}
{83}
{89}
{97}
{101}
{103} 0

continued on next page
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TABLE A.12: Imprimitive nonics with |S| =1 (cont.)

S Ty | T3 | Ty | Tyo | T11 | T3 | Too | To2 | Tos | Total
(107}
(109} | 1
(113}
(127} | 1
(131}
(137}
{139} 1
{149}
(151}
(157}
(163} | 1 1
{167}
(173}
{179}
(181} | 1
{191}
{193}
(197}
(199} | 1| 1
(211} 1] 1
(223}
(227}
(229} 1

o
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TABLE A.13: Old imprimitive nonics where .S contains 2 primes.

S T2 T4 T5 Tg Total
{2,3} 8 |1 ]22] 31
{2,5} 0
{3,5} 501141 10
2,71} 0
37y | 1]20] 1|4 26
(5,7} 1
{2,11} 1
(3,11} 6 |1/]9]| 16

continued on next page




TABLE A.13: Old imprimitive nonics with |S| =2 (cont.)

S T2 T4 T5 Tg Total
(5,11} 0
(7,11} 0
{2,13} 2 1| 3
{313} | 1 [32] 2 |16]| 51
{5,13}

{713} | 1
{11,13} 1
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A.4. Imprimitive Decic Tables

We now provide tables for imprimitive fields of degree 10. We partition the imprim-
itive decics into 2 groups, those with a quintic subfield and those with a quadratic subfield.
For those cases having 2 primes and a quintic subfield, the fields were further partitioned
into new and old fields.

Tables A.17, A.18, A.19 A.20, A.21, and A.22 give numbers of each type of field
for various sets S. In addition, Table A.21 sorts the data by quadratic subfield K. As in
previous cases, if a column does not exist for a specific type of field then that means that
no fields of that type were found for all cases in that table. Finally, note that Table A.22 is
not complete, but is guaranteed to contain every field satisfying vo(dr) < 27.

Tables A.23, A.24, and A.25 give specific field data, ordered by increasing class
number. In the interest of saving space, Table A.24 only lists those fields having a class
number greater than or equal to 32.

TABLE A.17: Decics with a quintic subfield (|S| = 1).

S T1 T2 T4 T12 T24 T25 T37 T38 Total
{2}
{3}
{5} |1 2
{7}
{11} | 1
{13}
{17}
{19}
{23}
{29}

)

{31} | 1
{37}

{41} | 1
{43}

{47} 1

{53}
{59}
{61} 1
{67}
{71} 1
{73}
{79} 1
{83} 0
continued on next page
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TABLE A.17: Decics with a quintic subfield (|S| =1). (cont.)

S

Ty

T3

T

Tho

Toy4

Tos

T37

ER

Total

{89}
{97}
{101}
{103}
(107}
{109}
{113}
{127}
{131}
{137}
{139}
{149}
{151}
157}
{163}
{167}
{173}
{179}
{181}
{191}
{193}
{197}
{199}
{211}
{223}
{227}
{229}

[en}

O R O R O, O F NEFEFWOOWNOOONRFEOOO - OO

TABLE

A.18: Old decics with a quintic subfield (]S| = 2).

11

Ty

13

T}

Ts

T11

T19

T59

Total

{2,3}
{2,5}
{3,5}
{2,7}

24
4

1
19
7

6
114
14

35
18

)
38
22

2

30
228
44
12

42
469
114

14

continued on next page
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TABLE A.18: Old decics with a quintic subfield (|S| = 2). (cont.)

S T1 T2 T3 T4 T5 T11 T12 T22 Total
3,7} 0
(B 1312147 14 4 | 8 | 42
{2113 | 7| 1|6 | 1] 6 2 12| 35
{311} | 3 6 9
{711} | 3| 1|2 1| 2 9
{2,13} 6 | 36 4 | 24| 70
{3,13} 0
{7.13} 1] 2 3

{113} | 3 | 1 | 2 6
{217} 7] 3 18| 28
{3.17} 123 ]1]2 9
{7.17} 1] 2 3
{11,17} | 3 3
{13,17} 1| 2 3
{2,19} 16|16 |7 ]2 |12 3
{3,19} 9 | 4| 8 | 21
{7,19} 1] 2 3
(11,09} | 3 | 2 | 4 1| 2 | 12
{13,19} 1| 2 3
{17,19} 1| 2 3
{2,23} 1| 6 5 | 30 | 42
{3,23} 3 3
{7,23} 1| 2 3
{11,23} | 3 1| 2 6
{13,23} 0
{17,23} 1] 2 3
{19,23} 1] 2 2 | 4 9
{2,29} 106|212 |14] 6 |36 | 77
{3,29} 12(1] 21|09 15
{729} 2 | 4

{1120} | 3 | 2 | 4 9
{13,29} 12| 3|24/ 12
{17,29} 21 46| 3] 6| 21
{19,29} 121 2 6
{23,29} 6 | 1 | 2 9




TABLE A.19: New decics with a quintic subfield (S| = 2).

107

S T |Th4 |T15 |The | To3 | Toa | To5 | Tog T34 | T3¢ | 137 | T3 | 139 | Total
{2,3} 7 7 42 91 91 546 784
{2,5} 3121 |60 |60 [360|173|173| 1038 | 35 | 245 | 450 | 450 | 2700 | 5768
(3,5} 8 | s | 16 | 32
2,7} 30 | 30 | 180 | 240
(3,7} 0
(575 |39 11 2 11| 2 | 20
{2,11} |3 |21 | 15| 15|90 | 15 | 15 90 46 46 276 632
(3,11} 0
(7,11} 11 2 | 4
{2,13} 90 | 90 | 540 84 | 84 | 504 | 1392
(3,13} 0
(7,13} 0

(11,13} 3036 12
{2,17} 15 | 105 | 61 61 366 608
(3,17} 13| 1] 1| 2| 8
(7,17} 31316 12
(11,17} 0
(13,17} 11| 2 4
{2,19} 15115190 | 15 | 15 90 7| 49 | 46 | 46 | 276 664
(3,19} 33| 6 | 12
(7,19} 0
(11,19} 0
(13,19} 0
(17,19} 303 6 | 12
{2,23} 31 | 31 186 107 | 107 | 642 | 1104
(3,23} 1] 3 4
(7,23} 11 2 | 4
(11,23} [ 3| 9 12
(13,23} 0
(17,23} 1 1] 2 4
(19,23} 1 1] 2 | 4
{2,29} 1515190 | 22 | 22| 132 | 22 | 154 | 138 | 138 | 828 | 1576
(3,20} 1] 3 4
(7,20} 11| 2 | 4
(11,29} 3036 12
{13,209} 2 4 4] 8 | 2
{17,209} 2 11| 2 | 8

continued on next page
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TABLE A.19: New decics with a quintic subfield (|S| = 2). (cont.)

S T8 | Tha |Tis | The | To3 | Tog | Tos | Tog | T34 | T36 | T37 | T38| T39 | Total

{19,29} 3 (3] 6 12
(23,29} 31 3] 6 | 12

TABLE A.20: Decics with a quadratic subfield (|S| = 1).

S Ty | Ty | Ty | Tho | Total
{2}
{3}
{5} 1 2 2
{7}
{11} 1
{13}
{17}
{19}
{23}
{29}
{31} | 1
{37}
{41} | 1
{43}
{47} 1

[an}

— O = O B O O O o O~ O Ot O

TABLE A.21: Decics with a quadratic subfield (|S| = 2).

S K T1 T2 T3 T5 T6 T11 T22 T40 T41 T43 Total
{2,3} | Q(vV-3) 5112 | 3| 12
{2,3} | Q(v/-1) ) 0 2 6 14
{37} | Q(vV-3) 0
{37 | Q-7 0
{37} | Q(v21) 0
{311} | Q(v/-3) 2 3
{3,11} | Q(v/—11) 2 3
{311} | Q(v33) 2 3

continued on next page



TABLE A.21: Decics with a quadratic subfield (|S| = 2). (cont.)

S K T1 T2 T3 T5 T6 T11 T22 T40 T41 T43 Total
{711} | Q(v/=7) 1 2 1 5
{711} | Q(v/—11) 1 1 3

TABLE A.22: All decics unramified outside S = {2,3}, containing

K = Q(+/2), and such that vs(dy) < 27.

S

K

Ty

T19

T59

Tyo

T3

Total

{2,3}

Q(v2)

1

2

3

11
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