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Abstract. In this paper, we compute the minimum discriminants of
imprimitive degree 10 fields for different combinations of Galois group
and signature. We use class field theory when there is a quintic subfield,
and a Martinet search in the more difficult case where there is only a
quadratic subfield.

If L is a degree n number field, let DL be its discriminant, and dL := |DL|
its absolute discriminant. Let G(L) be a transitive subgroup of Sn giving
the Galois group of the Galois closure of L/Q, which is well-defined up to
conjugation. We let r1 denote the number of real places of L.

For a given positive integer n and group G ≤ Sn, several authors have
contributed to our knowledge of minimizing dL for fields L with [L : Q] = n
and G(L) = G. In [Klüners and Malle 2001], Klüners and Malle discuss the
more refined problem of minimizing dL with n, G, and r1 fixed, as well as
the still more refined analogue of this question where the conjugacy class of
complex conjugation specified. Their results are primarily for degrees ≤ 8,
and there have been some results in degree 9. Here we consider imprimitive
fields in degree n = 10 and attempt to determine minimal examples for fixed
G and r1.

The computation for imprimitive decics divides naturally into three cases,
which we label as follows. We refer to decics L which contain a quadratic
but not quintic subfield as Type 2 fields, those which contain a quintic
but no quadratic subfield as Type 5 fields, and those which contain both
as Type 2-5 fields. The most difficult cases are Type 2 fields where we
employed computer searches based on Martinet’s generalization of Hunter’s
theorem. Some of these were standard Martinet searches, and some were
targeted Martinet searches in the sense of [Driver and Jones 2009]. This is
explained in Section 1.

Section 2 treats Type 5 decics using class field theory. These computations
rely on having a sufficiently large complete list of quintic fields to work
from. We extended the range of known totally real quintic fields K from
dK ≤ 2 · 107 to dK ≤ 108 which in turn, allowed us to determine more
minimal decic discriminants.

Finally, in Section 3 we describe results for the simplest case, Type 2-
5 decic fields. These fields are just tensor products of their subfields, so
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working with tables of lower degree fields suffices here. Again, we employed
our extended list of totally real quintic fields here.

1. Type 2 Decics

1.1. The Martinet Search. A standard technique for searching for all
fields with absolute discriminant less than a given bound comes from the
geometry of numbers. In particular, all such primitive degree n extensions
of a degree m field can in principle be found using Martinet’s theorem, a
generalization of Hunter’s theorem [Cohen 2000, Sec 9.3].

Here, we use Martinet’s theorem to find all quintic extensions of a qua-
dratic base field. If a decic field L with a quadratic subfield K satisfies the
discriminant bound dL ≤ B, then the discriminant of K must satisfy

dK ≤ d1/5
L ≤ B1/5.

In this paper, we take B = 1010. Thus, it is necessary to search over each
quadratic base field satisfying dK ≤ 100; there are 61 such quadratic fields.

In [Driver and Jones 2009], we show how to target particular discrimi-
nants in a Martinet search. Note, our search here is naturally broken up
into 61 searches, one for each quadratic field. When the quadratic base field
has relatively large discriminant there are correspondingly few possibilities
for the decic discriminant beneath the bound B. For example, when the
quadratic base field is K = Q(

√
97), the only possibility for the decic field

is dL = 975.
When we have a priori knowledge of the absolute decic discriminant, we

can first test to make sure that the ratio of the absolute polynomial dis-
criminant to dL is a square. This usually weeds out 99% of the candidate
polynomials, and allows us to skip the more computationally expensive tasks
of checking for irreducibility and computing field discriminants. Even when
multiple discriminants are possible, it is usually much faster to use several
targeted searches instead of a single standard search.

The use of targeting is only helpful here for those base fields having the
largest discriminant bounds; as the discriminant of the base field drops, a
point is reached where too much targeting would be required in order to be
practical. In our implementation, we found that a good rule of thumb is to
use a targeted Martinet search for those base fields having dK ≥ .75B1/5.

1.2. Results. For our first attempt, we used a discriminant bound of B =
109. The Martinet search took approximately one week on a 3GHz Pentium,
and found 239 fields.

To extend the search further, we used a distributed computing approach
through the BOINC system [BOINC]. With B = 1010, the computation took
a total of approximately 20,000 machine hours (summed over all hosts). It
found 10,565 fields. Table 1 shows the distribution of fields partitioned by
type and signature. If no fields of a particular Galois group (resp. signature)
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Table 1: Numbers of decics L with a quadratic subfield and dL ≤ 1010.

Signature
Gal (0,5) (2,4) (4,3) Total

T1 1 1
T2 2 2
T3 6 2 8
T5 1 0 1
T6 6 6
T11 2 0 2
T21 14 12 26
T22 158 14 172
T33 1 0 1
T40 2 4 6
T41 5 0 5
T43 9187 946 202 10335

were found then the corresponding row (resp. column) was left out of the
table. Impossible combinations of type and signature are grayed out.

Table 2 gives the minimum discriminants for Type 2 decics as determined

Table 2: Minimum discriminants and defining polynomials of Type 2 decics.

Gal r1 Discrim. Polynomial
T6 0 −35314 x10 + 2x8 − 3x7 + 3x6 − 7x5 + 8x4 − 7x3 + 7x2 − 4x+ 1
T21 0 −2107612 x10 − 4x9 + 8x8 − 10x7 + 9x6 − 6x5 + 3x4 − x2 + 1
T21 2 556012 x10 − 3x9 + 5x8 − 5x7 + 2x6 + 2x5 − 4x4 + 2x3 − 2x+ 1
T33 0 −353373 x10 − 4x9 + 7x8 − 11x7 + 18x6 − 19x5 + 16x4 − 17x3 + 10x2 − 3x+ 3
T40 0 −3549032 x10 − x9 + 5x8 − 3x7 + 8x6 − 4x5 + 4x4 − 3x3 − x+ 1
T40 2 5514292 x10 − 4x9 + 8x8 − 12x7 + 18x6 − 21x5 + 18x4 − 9x3 + x2 + 2x− 1
T41 0 −2635132432 x10 − x9 − 4x8 + x7 + 8x6 + 2x5 − 6x4 − x3 + 7x2 + 5x+ 1
T43 0 −351127369 x10 − 3x9 + 5x8 − 6x7 + 6x6 − 4x5 + 2x4 − x3 + x2 − x+ 1
T43 2 55280001 x10 − x9 − x8 + 3x7 − 3x6 − x5 + 5x4 − x3 − 3x2 + x+ 1
T43 4 −55103911049 x10 − 3x9 + 5x8 − 4x7 − 2x6 + 8x5 − 8x4 + x3 + 3x2 − 3x+ 1

by our computer search. Since these polynomials were computationally the
most difficult to obtain, we include defining polynomials of the corresponding
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fields. Here, signatures are given by just r1, the number of real places.
Discriminants are given in factored form. Here, and in subsequent tables,
we include exponents of 1 in a factorization if needed to separate prime
factors.

2. Type 5 Decics

2.1. Totally Real Quintics. Studying Type 5 decics relies on our knowl-
edge of quintic fields. In the case of totally real quintics K, those with
dK ≤ 2 · 107 were classified by [Schwarz, Pohst, and Diaz Y Diaz 1994], and
are available at [Bordeaux]. While the bound for dK is large compared to
the corresponding bounds for the two other signatures of quintic fields, it
only accounts for 22,740 fields which we found insufficient.

We implemented a standard Hunter’s search using the methods described
in [Cohen 2000, §9.3] to find all totally real quintic fields K with dK ≤ 108.
The number of fields broken down by Galois group is given in Table 3.
Here we use common names for the Galois groups, which correspond to

Table 3: Numbers of totally real quintic number fields K with dK ≤ 108,
partitioned by Galois group.

Gal C5 D5 F5 A5 S5

# 6 72 59 80 162,022

T1–T5 respectively using the labelling of [Butler and McKay 1983]. The
fields themselves are available at [Jones and Roberts]. As was the case in
[Schwarz, Pohst, and Diaz Y Diaz 1994], almost all of the fields have Galois
group S5. Although this is a fairly modest increase in the range of discrim-
inants, it was of great use in computing the minimal absolute discriminants
totally real decics of Type 5 and Type 2-5.

2.2. Class Field Theory. For decic fields containing a quintic subfield,
class field theory provides a mechanism for computing the desired fields.
Here, computations are relatively simple in comparison to more general cases
of Kummer theory since our fields always contain ζ2 = −1, so the desired
extensions can be found by taking square roots of appropriate elements. An
algorithm for this is given in [Cohen 2000, §9.2.2].

All computations here were carried out with gp [PARI2]. We needed to
deviate from the approach given in [Cohen 2000] because of memory issues.
Given a base field K and bound B, a quadratic extension corresponding
to modulus (m0,m∞) needs to satisfy d2

KN(m0) ≤ B. In some cases, it
was impractical to first compute all m0 with N(m0) ≤ B/d2

K . Instead, we
compute the list L of all such moduli which are only divisible by primes
p ≤ B1 :=

√
B/d2

K . All additional moduli are then of the form m0Q where
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Q divides a prime q with B1 < q ≤ B/d2
K , and m0 from L. So, as we

compute these, we compute the corresponding fields as we go and do not
have to store these additional moduli.

For example, consider the totally real S5 quintic field of minimal discrim-
inant. It has discriminant 61 · 397. With B = 1016, the first phase found
and stored the 766,157 moduli which are divisible only by primes less than
B1 = 4129. The total number of moduli was 3,851,600.

One could compute decic overfields of quintics using a Martinet search,
as was done in [Selmane 2000a, Selmane 2000b, Selmane 2002]. We found,
however, that class field theory was much more efficient.

2.3. Results. For complete searches of Type 5 decics, we computed all fields
L with dL ≤ 1012. When the quintic subfield was totally real, we computed
all decics with dL ≤ 1013. The results are summarized in Table 4. These

Table 4: Numbers of Type 5 decic fields L with dL ≤ B by signature.
Columns correspond to the number of real places for the decic field, and
rows correspond to the number of real places of the quintic subfield.

r1 B 0 2 4 6 8 10

1 1012 226764 210453
3 1012 11972 37249 32852 7876
5 1013 772 3954 7527 7592 2849 313

computations include, and extend, those performed in [Selmane 2000a, Selmane 2000b,
Selmane 2002]. We found one discrepancy with these prior computations,
namely we found one more totally complex decic field with a quintic sub-
field with r1 = 3 and dL ≤ 1011. Otherwise, our results are consistent with
[Selmane 2000a, Selmane 2000b, Selmane 2002].

Table 5 gives our findings for minimal absolute discriminants for Type 5
decics. Most entries come from the searches summarized above, namely
from fields with dL ≤ 1012. Almost all of the cases not settled by that
search had a totally real quintic subfield. This naturally includes totally
real decics (r1 = 10), but also cases where (T, r1) = (16, 2), (16, 6), (24, 6),
(25, 6), (29, 4), (29, 6), (29, 8), (34, 6), (36, 4), (36, 6), (36, 8), (38, 6).

For example, consider a T16 decic L with r2 = 2. The group T16 has two
conjugacy classes of elements of order 2 and cycle type 2216. The unique
quintic subfield K has G(K) = D5, and in the projection T16→ D5 induced
by the inclusion K ↪→ L, elements of cycle type 2216 map to the identity.
So, for a T16 decic with r1 = 2, the quintic subfield is a totally real D5 field.

In these cases, we made use of the quintics computed in Section 2.1. In
each case, we computed decic overfields of the desired signature, where the
quintic had a the correct Galois group, and dL ≤ 1016. In this computation,
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Table 5: Minimum discriminants for Type 5 decics.

Signature
Gal (0, 5) (2, 4) (4, 3) (6, 2) (8, 1) (10, 0)

T8 118232 118232 210118232

T14 −1181451 11889 −11823 118109 −118331 11843167
T15 210474 324014 6724104

T16 −52475 324015 4015 1724015

T23 −47483 474193 −314014 1314014 −334014 39714014

T24 216136 21051074 ?
T25 212137 21051174 ?
T29 −2813631 2813641 −2831536 2851536 −28191536 285107497
T34 ? 348834 261141134

T36 −21217443 214111174 −24318814 261718814 −358834 241142911134

T37 5257832 2101323472 210364972

T38 −382233 282273 −28134193 6133973 24337693

T39 −722314312 724116312 −7243112172 461157832 −61216713972 6123972757

we only kept track of fields of minimal discriminant for each Galois group
since the number of fields in some cases was so large.

3. Type 2-5 Decics

The simplest case is where the decic contains both a quadratic and quintic
subfield. There are 8 corresponding decic Galois groups. These fields are eas-
ily generated from tables of quadratics and quintics by forming composita.
We used quintics from the Bordeaux ftp site [Bordeaux], augmented by the
results of our search for totally real quintics described in Section 2.1 above.
Naturally, some care must be exercised to insure that one has searched far
enough. Using this method, we were able to find the minimum discriminants
for all the above mentioned decics, and for almost all possible signatures,
with the results given in Table 6.
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